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Section 4.4. The General Lebesgue Integral

Note. In this section, we define our last class of functions. We drop all conditions

on measurable function f except for a type of boundedness that will allow us to

avoid the meaningless “∞−∞” in our computations.

Definition. For extended real-valued function f on E, define

f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}

for all x ∈ E. We call f+ the positive part of f and we call f− the negative part of

f .

Note. Notice that the positive part and negative part of f are both nonnegative.

We have f = f+ − f− and |f | = f+ + f−. Recall from the previous section that a

nonnegative function is “integrable” on set E if
∫

E f < ∞. The next result relates

the integrabiity of the nonnegative functions f+, f−, and |f |.

Proposition 4.14. Let f be a measurable function on E. Then f+ and f− are

integrable over E if and only if |f | is integrable over E.

Note. We now extend the definition of “integrable” (in the setting that it was

defined in the previous section, namely for nonnegative functions) to the setting of

general measurable functions.
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Definition. A measurable function f on E is said to be integrable over E provided

|f | is integrable over E. In this case, define the integral of f over E by∫
E

f =

∫
E

f+ −
∫

E

f−.

Note. By Proposition 4.14 we see that for integrable f on set E, both
∫

E f+ and∫
E f− are finite so that we have avoided a computation involving ∞−∞ in the

previous definition. Notice that for nonnegative functions (for which, of course,

|f | = f) the definition of integrable here coincides with the definition as stated in

the previous section. Our “Class 3” functions are those measurable functions which

are integrable (over a given set E). We now establish some properties of Class 3

functions.

Proposition 4.15. Let f be integrable over E. Then f is finite a.e. on E and∫
E

f =

∫
E\E0

f if E0 ⊂ E and m(E0) = 0.

Note. The next result is similar to the Direct Comparison Test from Calculus

2 concerning the convergence of improper integrals. See Theorem 2 in my online

Calculus 2 (MATH 1920) notes on 8.7. Improper Integrals.

Proposition 4.16. The Integral Comparison Test.

Let f be a measurable function on E. Suppose there is a nonnegative function

g that is integrable over E and |f | ≤ g on E. Then f is integrable over E and∣∣∣∣∫
E

f

∣∣∣∣ ≤ ∫
E

|f |.

https://faculty.etsu.edu/gardnerr/1920/12/c8s7.pdf
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Note. The purpose of the next definition is to deal with the case of extended real

valued functions where the value of f + g could yield “∞−∞.” Though this may

occur at some x values, we limit it to a set of measure 0 which we then ignore in

the integral of f + g.

Definition. Let f and g be extended real valued functions defined on E and

suppose they are finite a.e. on E, say f and g are finite on A ⊂ E where m(E\A) =

0. Define

∫
E

(f + g) =

∫
A

(f + g).

Note. We now establish our last linearity and monotonicity theorem. We prove

this result for Class 3 functions.

Theorem 4.17. Linearity and Monotonicity of Integration.

Let the functions f and g be integrable over E. Then for any α and β, the function

αf + βg is integrable over E and∫
E

(αf + βg) = α

∫
E

f + β

∫
E

g.

Also, if f ≤ g on E, then

∫
E

f ≤
∫

E

g.

Note. We now state and prove an additivity result for Class 3 functions.
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Corollary 4.18. Additivity Over Domains of Integration.

Let f be integrable over E. Assume A and B are disjoint measurable subsets of E.

Then ∫
A∪·B

f =

∫
A

f +

∫
B

f.

Note. For a convergence theorem for Class 3 functions, we impose a sort-of uni-

form boundedness on the sequence {fn}. This is accomplished by bounding (or

“dominating”) the functions fn, not by a constant, but by an integrable function.

Theorem. The Lebesgue Dominated Convergence Theorem.

Let {fn} be a sequence of measurable functions on E. Suppose there is a function

g that is integrable over E and dominates {fn} in the sense that |fn| ≤ g on E for

all n. If {fn} → f pointwise a.e. on E, then f is integrable over E and

lim
n→∞

(∫
E

fn

)
=

∫
E

(
lim
n→∞

fn

)
=

∫
E

f.

Note. The following generalization of the Lebesgue Dominated convergence Theo-

rem replaces integrable g with a sequence of gn. The proof is to be given in Problem

4.32.
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Theorem 4.19. The General Lebesgue Dominated Convergence Theo-

rem.

Let {fn} be a sequence of measurable functions on E that converges pointwise a.e.

on E to f . Suppose there is a sequence {gn} of nonnegative measurable functions

on E that converges pointwise a.e. on E to g and dominates {fn} on E in the sense

that |fn| ≤ gn on E for all n ∈ N. If lim
n→∞

(∫
E

gn

)
=

∫
E

g < ∞ then

lim
n→∞

(∫
E

fn

)
=

∫
E

(
lim
n→∞

fn

)
=

∫
E

f.
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