Section 6.3. Functions of Bounded Variation: Jordan's Theorem

Note. In this section we define functions of bounded variation and show that such a function is the difference of two increasing functions (this is Jordan's Theorem).

Note. Let f be a real-valued function on the closed, bounded interval $[a, b]$ and let $P=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ be a partition of $[a, b]$. Define the variation of f with respect to P as

$$
V(f, P)=\sum_{i=1}^{k}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right| .
$$

The total variation of f on $[a, b]$ is

$$
T V(f)=\sup \{V(f, P) \mid P \text { is a partition of }[a, b]\}
$$

Definition. A real-valued function f on the closed, bounded interval $[a, b]$ is of bounded variation on $[a, b]$ if $T V(f)<\infty$.

Note. The image of a function $f: \mathbb{R} \rightarrow \mathbb{C}$ of bounded variation on $[a, b]$ is the type of path we integrate over in the complex setting. For details on the relevant definitions in this setting, the development of the Riemann-Stieltjes integral, and the definition of a complex line ("path") integral, see my online notes for Complex Analysis 1 and 2 (MATH 5510/5520):
http://faculty.etsu.edu/gardnerr/5510/notes/IV-1.pdf.

Example. Let f be increasing on $[a, b]$. Then f is of bounded variation since $T V(f)=f(b)-f(a)$.

Example. Function f defined on set E is Lipschitz if there exists $c \geq 0$ such that $\left|f\left(x^{\prime}\right)-f(x)\right| \leq c\left|x^{\prime}-x\right|$ for all $x^{\prime}, x \in E$. A differentiable function is Lipschitz, and a Lipschitz function is continuous. So Lipschitz is a condition between continuity and differentiability. If f is Lipschitz on $[a, b]$ then f is of bounded variation on $[a, b]$ and $T V(f) \leq c(b-a)$. For further discussion of Lipschitz functions, see my "Primer on Lipschitz functions" online at:
http://faculty.etsu.edu/gardnerr/5510/CSPACE.pdf.

Example. Define the function f on $[0,1]$ by

$$
f(x)=\left\{\begin{array}{cl}
x \cos (\pi / 2 x) & \text { if } 0<x \leq 1 \\
0 & \text { if } x=0
\end{array}\right.
$$

Then f is continuous on $[0,1]$, but f is not of bounded variation on $[0,1]$. For $n \in \mathbb{N}$, and partition $P_{n}=\{0,1 /(2 n), 1 /(2 n-1), \ldots, 1 / 3,1 / 2,1\}$ of $[0,1]$ we have

$$
V\left(f, P_{n}\right)=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} .
$$

Since this is the partial sum for a harmonic series, then $T V(f)=\infty$.

Lemma 6.5. Let the function f be of bounded variation on the closed, bounded interval $[a, b]$. Then f has the following explicit expression as the difference of two increasing functions on $[a, b]$:

$$
f(x)=\left[f(x)+T V\left(f_{[a, x]}\right)\right]-T V\left(f_{[a, x]}\right) \text { for all } x \in[a, b] .
$$

Jordan's Theorem.

A function f is of bounded variation on the closed, bounded interval $[a, b]$ if and only if it is the difference of two increasing functions on $[a, b]$. When f is written as such a difference, it is called a Jordan decomposition of f.

Corollary 6.6. If the function f is of bounded variation on the closed, bounded interval $[a, b]$, then it is differentiable almost everywhere on the open interval (a, b) and f^{\prime} is integrable over $[a, b]$.

