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Section 6.4. Absolutely Continuous Functions

Note. In this section we define absolute continuity. Our Fundamental Theorem of

Calculus will hold for this type of function.

Definition. A real-valued function f on a closed, bounded interval [a, b] is abso-

lutely continuous on [a, b] if for each ε > 0 there is δ > 0 such that for every finite

disjoint collection {(ak, bk)}n
k=1 of open intervals in (a, b),

if

n∑

k=1

(bk − ak) < δ then

n∑

k=1

|f(bk) − f(ak)| < ε.

Note. If f is absolutely continuous on [a, b] then we see that, with n = 1, f is

uniformly continuous on [a, b]. The converse does not hold, though.

Example. The Cantor-Lebesgue function φ from Section 2.7 is increasing and

continuous on [0, 1]. However, φ is not absolutely continuous. Let n ∈ N. At the

nth state fo the construction of the Cantor set, a disjoint collection {[ck, dk]}2n

k=1 of

2n subintervals of [0, 1] have been constructed that cover the Cantor set, each of

which has length 1/3n. The Cantor-Lebesgue function is constant on each of the

open intervals that comprise the complement in [0, 1] of this collection of intervals.

Therefore, since φ is increasing and φ(1) − φ(0) = 1 − 0 = 1,

2n∑

k=1

(dk − ck) = 2n(1/3n) = (2/3)n while
2n∑

k=1

(φ(dk) − φ(ck) = 1 − 0 = 1
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(since c0 = 0 and d2n = 1; the [ck, dk] cover the Cantor set and are subintervals of

[0, 1]). So with 0 < ε ≤ 1, there is no sufficiently small δ > 0 to give the condition

of absolute continuity (choosing n sufficiently large, we can get (2/3)n < δ, but the

sum of function values are still equal to 1).

Note. Linear combinations of absolutely continuous functions are absolutely con-

tinuous. The composition of absolutely continuous functions may not be absolutely

continuous (see Problem 6.43).

Note. We now give three results relating absolute continuity to some other prop-

erties of functions.

Proposition 6.7. If the function f is Lipschitz on a closed, bounded interval [a, b],

then it is absolutely continuous on [a, b].

Note. The converse of Proposition 6.7 does not hold. f(x) =
√

x is absolutely

continuous on [0, 1], but not Lipschitz on [0, 1] (see problem 6.37).

Theorem 6.8. Let the function f be absolutely continuous on the closed, bounded

interval [a, b]. Then f is the difference of increasing absolutely continuous functions

and, in particular, is of bounded variation.
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Theorem 6.9. Let the function f be continuous on the closed, bounded interval

[a, b]. Then f is absolutely continuous on [a, b] if and only if the family of divided

difference functions {Diffh[f ]}0<h≤1 is uniformly integrable over [a, b].

Note. For a nondegenerate closed, bounded interval [a, b], let FLip, FAC, and

FBV denote the families of functions on [a, b] which are, respectively, Lipschitz,

absolutely continuous, and of bounded variation. By Proposition 6.7 and Theorem

6.8 we have FLip ⊆ FAC ⊆ FBV. In fact, each of these families are closed under

linear combinations.
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