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Section 6.5. Integrating Derivatives:

Differentiating Indefinite Integrals

Note. Recall the Fundamental Theorem of Calculus as stated in Thomas’ Calculus

12th Edition (see my online notes at http://faculty.etsu.edu/gardnerr/1910/

Notes-12E/c5s4.pdf):

The Fundamental Theorem of Calculus, Part 1. If f is continuous on [a, b]

then the function

F (x) =

∫ x

a

f(t) dt

has a derivative at every point x in [a, b] and

dF

dx
=

d

dx

[
∫ x

a

f(t) dt

]

= f(x).

The Fundamental Theorem of Calculus, Part 2. If f is continuous at every

point of [a, b] and if F is any antiderivative of f on [a, b], then

∫ b

a

f(x) dx = F (b) − F (a).

Our Fundamental Theorem also has two parts, though we prove “the second part”

first (in Calculus 1, the proof of the second part depends on the first part).
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Theorem 6.10. Fundamental Theorem of Lebesgue Calculus, Part 2.

Let the function f be absolutely continuous on the closed, bounded interval [a, b].

Then f is differentiable almost everywhere on (a, b), its derivative f ′ is integrable

over [a, b], and
∫ b

a

f ′ = f(b) − f(a).

Proof. By the change of variables formula (14) on page 113 and in the proof of

Corollary 6.4, we have
∫ v

u

Diffh[f ] = Avx[f(v)] = Avh[f(u)]

for all a ≤ u < v ≤ b. Since f is absolutely continuous then it is continuous and so

lim
h→0+

(Avh[f(u)]) lim
h→0+

(

1

h

∫ u+h

u

f

)

= f(u)

(as shown in detail in Calculus 1). So replacing h with 1/n and letting n → 0 we

have (with u = a and v = b)
(

∫ b

a

Diff1/n[f ]

)

= f(b) − f(a). (29)

Theorem 6.8 implies that f is the difference of two increasing functions on [a, b]

and therefore, by Lebesgue’s Theorem, f is differentiable a.e. on (a, b). Since

the sequence {Diff1/n[f ]} converges to f ′ for the x values where f ′(x) exists, then

{Diff1/n[f ]} converges pointwise a.e. on (a, b) to f ′. By Theorem 6.9, since f is

absolutely continuous, the family {Diff1/n[f ]}∞n=1 ⊆ {Diffh[f ]}0<h≤1 is uniformly

integrable over [a, b]. By the Vitali Convergence Theorem,

lim
n→∞

(∫ b

a

Diff1/n[f ]

)

=

∫ b

a

lim
n→∞

(Diff1/n[f ]) =

∫ b

a

f ′.

Combining this with (29) gives the result.
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Note. Our Fundamental Theorem differs from that of Calculus 1 in that we are

integrating f ′ where we assume that f itself is absolutely continuous. In Calculus

1 it is assumed that the integrand is continuous. Our integrand f ′ may not be

continuous—in fact, it may not even exist on a set of measure zero. For example,

consider

f(x) =







x if x ∈ [0, 1]

1 if x ∈ (1, 2].

Then f(x) is absolutely continuous on [0, 2]. Also,

f ′(x) =







1 if x ∈ (0, 1)

0 if x ∈ (1, 2),

so f is differentiable a.e. on (0, 2), but f ′ is not continuous on [0, 2]. So the Calculus

1 Fundamental Theorem does not apply (although the techniques of Calculus 1 can

be applied to evaluate
∫

2

0
f ′(x) dx). By our Fundamental Theorem,

∫

2

0

f ′ = f(2) − f(0) = 1.

Note. For the first part of our Fundamental Theorem we need the idea of an

antiderivative. Recall from Calculus 1 that the indefinite integral of f is the set of

all antiderivatives of f . We take a slightly different approach here.

Definition. A function f on closed, bounded interval [a, b] is the indefinite integral

of g over [a, b] if g is Lebesgue integrable over [a, b] and

f(x) = f(a) +

∫ x

a

g for all x ∈ [a, b].
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Note. The following result gives a nice classification of absolutely continuous

functions.

Theorem 6.11. A function f on a closed, bounded interval [a, b] is absolutely

continuous on [a, b] if and only if it is an indefinite integral over [a, b].

Corollary 6.12. Let the function f be monotone on the closed, bounded interval

[a, b]. Then f is absolutely continuous on [a, b] if and only if

∫ b

a

f ′ = f(b) − f(a).

Note. The following technical result is used in the proof of the other half of our

Fundamental Theorem.

Lemma 6.13. Let f be integrable over the closed bounded interval [a, b]. Then

f(x) = 0 for almost all x ∈ [a, b] if and only if
∫ x2

x1
f = 0 for all (x1, x2) ⊆ [a, b].

Note. Now for our Fundamental Theorem of Lebesgue Calculus Part 1! As ex-

pected, it states that the derivative of an integral yields the integrand.
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Theorem 6.14. Fundamental Theorem of Lebesgue Calculus, Part 1.

Let f be integrable over the closed, bounded interval [a, b]. Then

d

dx

[
∫ x

a

f

]

= f(x) for almost all x ∈ (a, b).

Proof. Define the function F on [a, b] by F (x) =
∫ x

a
f for all x ∈ [a, b]. Theorem

6.11 tells us, since F is an indefinite integral, that it is absolutely continuous.

Therefore, by Theorem 6.10, F is differentiable a.e. on (a, b) and its derivative F ′

is integrable. By Lemma 6.13, to show that the integrable function F ′−f vanishes

a.e. on [a, b] it suffices to show that its integral over every closed subinterval of

[a, b]. By Theorem 6.10, with [a, b] replaced by [x1, x2] we have
∫ x2

x1

[F ′ − f ] =

∫ x2

x1

F ′ −

∫ x2

x1

f by linearity

= F (x2) − F (x1) −

∫ x2

x1

f by definition of F

=

∫ x2

x1

f −

∫ x2

x1

f by additivity

= 0.

So by Lemma 6.13, F ′ − f = 0 for almost all x ∈ [a, b]; or F ′ = f for almost all

x ∈ (a, b).

Definition. A function of bounded variation on set E is singular if its derivative

is 0 a.e. on E.

Note. The Cantor-Lebesgue function is an increasing nonconstant singular func-

tion on [0, 1].
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Note. Let f be of bounded variation on [a, b]. By Corollary 6.6, f ′ exists a.e. on

[a, b] and f ′ is integrable on [a, b]. Define

g(x) =

∫ x

a

f ′ and h(x) = f(x) −

∫ x

a

f ′ for all x ∈ [a, b].

Then f = g + h on [a, b]. By Theorem 6.11, g is absolutely continuous since it is

an indefinite integral. By the Fundamental Theorem of Lebesgue Calculus Part 1,

d

dx
[h(x)] =

d

dx

[

f(x) −

∫ x

a

f ′

]

= f ′(x) − f ′(x) for almost all x ∈ (a, b)

= 0,

and so h′(x) = 0 for almost all x ∈ (a, b). That is, h is singular on [a, b]. We have

dcomposed f into the sum of an absolutely continuous function plus a singular

function under the assumption that f is of bounded variation.

Definition. For bounded variation function f on [a, b], if f = g + h where g is

of bounded variation and absolutely continuous and h is of bounded variation and

singular, the sum f = g + h is a Lebesgue decomposition of f .
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