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Section 6.6. Convex Functions

Note. In this section we present several classical results concerning “convex func-

tions” (examples of which are the concave up functions from Calculus 1). We also

prove a result (Jensen’s Inequality) which concerns convex functions and integrable

functions. Throughout this section, “(a, b)” denotes an open interval that may be

either bounded or unbounded.

Definition. A real-valued function ϕ on (a, b) is convex provided for each pair of

points x1, x2 ∈ (a, b) and each λ with 0 ≤ λ ≤ 1 we have

ϕ(λx1 + (1 − λ)x2) ≤ λϕ(x1) + (1 − λ)ϕ(x2).

Note. As λ ranges over [0, 1], the values of λx1 + (1 − λ)x2 ranges from x2 to x1

and the values of λϕ(x1)+ (1−λ)ϕ(x2) range (“linearly”) from ϕ(x2) to ϕ(x1). So

the geometric interpretation is that the chord joining (x1, ϕ(x1)) to (x2, ϕ(x2)) lies

above the corresponding function values (as does a “concave up” function).
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Note. We can also describe convex functions in terms of slopes of chords. With

x1 < x2 in (a, b) and x ∈ (x1, x2), we have x = λx1 + (1 − λ)x2 for λ = (x2 −

x)/(x2 − x1). So from the definition of convex we have

ϕ(x) ≤

(

x2 − x

x2 − x1

)

ϕ(x1) +

(

x − x1

x2 − x1

)

ϕ(x2)

since 1 − λ = 1 − (x2 − x)/(x2 − x1) = (x − x1)/(x2 − x1). This gives

(x2 − x1)ϕ(x) ≤ (x2 − x)ϕ(x1) + (x − x1)ϕ(x2) (38′)

which holds if and only if

x2ϕ(x) − (x2 − x)ϕ(x1) ≤ (x − x1)ϕ(x2) + x1ϕ(x)

if and only if

x2ϕ(x) − xϕ(x) − (x2 − x)ϕ(x1) ≤ (x − x1)ϕ(x2) + x1ϕ(x) − xϕ(x)

if and only if

(x2 − x)(ϕ(x) − ϕ(x1)) ≤ (x − x1)(ϕ(x2) − ϕ(x))

if and only if

ϕ(x) − ϕ(x1)

x − x1

≤
ϕ(x2) − ϕ(x)

x2 − x
(39)

for all x1 < x < x2 in (a, b). So geometrically in terms of slopes of chords, convexity

of ϕ on (a, b) implies that the slope of the chord from (x1, ϕ(x1)) to (x, ϕ(x)) is less

than or equal to the slope of the chord from (x, ϕ(x)) to (x2, ϕ(x2)).

Note. The following result confirms that “concave up” functions of Calculus 1 are,

in fact, convex.
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Proposition 6.15. If ϕ is differentiable on (a, b) and its derivative ϕ′ is increasing,

then ϕ is convex. In particular, if ϕ′′ exists on (a, b) and ϕ′′ ≥ 0 on (a, b), then ϕ

is convex.

Example. Function ϕ(x) = xp is convex on (0,∞) for p ≥ 1 since ϕ′′(x) =

p(p − 1)xp−2 > 0 for x ∈ (0,∞). We’ll use the convexity of this function in our

exploration of Lp spaces where p ≥ 1.

The Chordal Slope Lemma. Let ϕ be convex on (a, b). If x1 < x < x2 are in

(a, b), then for points P1 = (x1, ϕ(x1)), P = (x, ϕ(x)), and P2 = (x2, ϕ(x2)) we have

ϕ(x) − ϕ(x1)

x − x1

≤
ϕ(x2) − ϕ(x1)

x2 − x1

≤
ϕ(x2) − ϕ(x)

x2 − x
.

That is, the slope of P1P is less than or equal to the slope of P1P2, which is less

than or equal to the slope of PP2.

Note. The picture for the Chordal Slope Lemma for a concave up function is:
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Definition. For a function g on interval (a, b) and point x0 ∈ (a, b), if

lim
h→0, h<0

g(x0 + h)− g(x0)

h
exists and is finite

then it is the left-hand derivative of g at x0, denoted g′(x−
0
). The right-hand deriva-

tive denoted g′(x+

0
) is similarly defined by restricting h > 0.

Lemma 6.16. Let ϕ be a convex function on (a, b). Then ϕ has left-hand and

right-hand derivative at each point x ∈ (a, b). Moreover, for points u < v in (a, b)

these one-sided derivatives satisfy the following inequality:

ϕ′(u−) ≤ ϕ′(u+) ≤
ϕ(v) − ϕ(u)

v − u
≤ ϕ′(v−) ≤ ϕ(v+).

Note. Lemma 6.16 implies that for u < v in (a, b), if ϕ′(u) and ϕ′(v) exist, then

ϕ′(u) ≤ ϕ′(v). The proof is left as homework.

Corollary 6.17. Let ϕ be a convex function on (a, b). Then ϕ is Lipschitz, and

therefore absolutely continuous, on each closed, bounded subinterval [c, d] of (a, b).

Theorem 6.18. Let ϕ be a convex function on (a, b). Then ϕ is differentiable ex-

cept at a countable number of points and its derivative ϕ′ is an increasing function.
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Definition. Let ϕ be a convex function on (a, b) and let x0 belong to (a, b). For

real number m, the line y = m(x − x0) + ϕ(x0) (which passes through the point

(x0, ϕ(x0)) is a supporting line at x0 for the graph of ϕ if this line always lies below

the graph of ϕ. That is, if

ϕ(x) ≥ m(x − x0) + ϕ(x0) for all x ∈ (a, b).

Lemma. Let ϕ be a convex function on (a, b) and let x0 belong to (a, b). Then

there is a supporting line at x0 for the graph of ϕ for every slope between ϕ′(x−
0 )

and ϕ′(x+

0 ).

Note. A convex function on an interval is a.e. differentiable by Theorem 6.18, so

a convex function on an interval is Riemann integrable on the interval (that is,

the Riemann integral exists) so we use the notation for Riemann integrals in the

following result.

Jensen’s Inequality. Let ϕ be a convex function on (−∞,∞), f an integrable

function over [0, 1], and ϕ ◦ f also integrable over [0, 1]. Then

ϕ

(
∫

1

0

f(x) dx

)

≤

∫

1

0

(ϕ ◦ f)(x) dx.
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