Chapter 7. The L^p Spaces: Completeness and Approximation Section 7.1. Normed Linear Spaces

Note. We assume E is a measurable set. Denote the set of all measurable extended real-valued functions on E that are finite a.e. on E as \mathcal{F} .

Definition. Define an equivalence relation \cong on \mathcal{F} as $f \cong g$ if and only if f = g a.e. on E.

Note. \cong is reflexive, symmetric, and transitive and so \cong really is an equivalence relation. Therefore \cong partitions \mathcal{F} into equivalence classes. We denote the equivalence class containing f as [f]. Since f is finite a.e., there is an element of [f]which is finite on all of E. We can define for all $\alpha, \beta \in \mathbb{R}$ and all [f] and [g], a linear combination $\alpha[f] + \beta[g]$ which is the equivalence class containing $\alpha f_F + \beta g_F$ where $f_F \in [f], g_F \in [g]$ and f_F, g_F are finite on E.

Definition. Let X be a set of functions (or equivalence classes of functions). Then X is a *linear space* if for all $f, g \in X$ (or $[f], [g] \in X$) and $\alpha, \beta \in \mathbb{R}, \alpha f + \beta g \in X$ (or $\alpha[f] + \beta[g] \in X$).

Example 7.1.A. Let $1 \le p < \infty$. Define $L^p(E)$ to be the set of equivalence classes of functions for which $\int_E |f|^p < \infty$. Notice that for $a, b \in \mathbb{R}$, $|a+b| \le |a|+|b| \le 2 \max\{|a|, |b|\}$

and so

$$|a+b|^p \le 2^p \left(\max\{|a|,|b|\}\right)^p \le 2^p \left(|a|^p+|b|^p\right).$$

So if $f, g \in L^p(E)$, then

$$|f+g|^p \le 2^p (|f|^p + |g|^p)$$
 on E

and

$$\int_{E} |f+g|^{p} \leq \int_{E} 2^{p} (|f|^{p} + |g|^{p}) \text{ by monotonicity of the integral} = 2^{p} \left(\int_{E} |f|^{p} + \int_{E} |g|^{p} \right) \text{ by linearity} < \infty$$

and so $f + g \in L^p(E)$. Also, $f \in L^p(E)$ implies that $\alpha f \in L^p(E)$ for all $\alpha \in \mathbb{R}$. So $L^p(E)$ is a linear space.

Definition. For $f \in \mathcal{F}$, we say f is essentially bounded if for some $M \ge 0$ (called an essential upper bound) for which $|f(x)| \le M$ for almost all $x \in E$. Define $L^{\infty}(E)$ to be the set of equivalence classes of the essentially bounded functions on E.

Note. "Clearly" $L^{\infty}(E)$ is a linear space.

Note. For our study of Banach and Hilbert spaces, we will no longer distinguish between a *function* f and the *equivalence class* [f].

Note. We will see parallels between the L^p spaces $(1 \le p \le \infty)$ and vector spaces.

Definition. Let X be a linear space. A real-valued functional (i.e., a function with X as its domain and \mathbb{R} as its codomain) $\|\cdot\|$ on X is a *norm* if for all $f, g \in X$ and for all $\alpha \in \mathbb{R}$:

- (1) $||f + g|| \le ||f|| + ||g||$ (Triangle Inequality).
- (2) $\|\alpha f\| = |\alpha| \|f\|$ (Positive Homogeneity).
- (3) $||f|| \ge 0$ and ||f|| = 0 if and only if f = 0 (Nonnegativity).

Definition. A normed linear space is a linear space X with a norm $\|\cdot\|$.

Example 7.1.B. Define $\|\cdot\|_1$ on $L^1(E)$ as $\|f\|_1 = \int_E |f|$. To verify $\|\cdot\|_1$ is a norm, notice that for $f, g \in L^1(E)$, f and g are finite a.e. on E (or WLOG everywhere on E) and so $|f + g| \leq |f| + |g|$ a.e. on E. So by monotonicity and linearity of integration

$$\|f+g\|_1 = \int_E |f+g| \le \int_E (|f|+|g|) = \int_E |f| + \int_E |g| = \|f\|_1 + \|g\|_1,$$

and therefore $\|\cdot\|_1$ satisfies the Triangle Inequality. Next, for $\alpha \in \mathbb{R}$

$$\|\alpha f\|_{1} = \int_{E} |\alpha f| = \int_{E} |\alpha| |f| = |\alpha| \int_{E} |f| = |\alpha| ||f||_{1},$$

and Positive Homogeneity holds. Finally,

$$||f||_1 = \int_E |f| = 0$$
 if and only if $f = 0$ a.e. on E

by Proposition 4.9, and so nonnegativity clearly holds.

Example 7.1.C. Define $\|\cdot\|_{\infty}$ on $L^{\infty}(E)$ as

$$||f||_{\infty} = \inf\{M \mid M \text{ is an essential upper bound of } f \text{ on } E\}$$
$$= \inf\{M \mid |f| \le M \text{ a.e. on } E\}.$$

 $||f||_{\infty}$ is called the *essential supremum* of f. It can be shown that $|| \cdot ||_{\infty}$ is a norm (see page 138) and hence $L^{\infty}(E)$ is a normed linear space.

Example. Let $[a, b] \subset \mathbb{R}$. Denote the linear space of continuous real-valued functions on [a, b] as C[a, b]. Define for $f \in C[a, b]$

$$||f||_{\max} = \max_{x \in [a,b]} |f(x)|.$$

It can be shown that $\|\cdot\|_{\max}$ is a norm (called the *maximum norm*) and so C[a, b] is a normed linear space (Problem 7.1).

Example. Let ℓ^1 be the set of all absolutely summable sequences of real numbers:

$$\ell^1 = \left\{ (a_1, a_2, \ldots) \left| \sum_{k=1}^{\infty} |a_k| < \infty \right\} \right\}.$$

Define $\|\cdot\|_1$ on ℓ^1 as

$$\|\{a_k\}\|_1 = \sum_{k=1}^{\infty} |a_k|.$$

Then $\|\cdot\|_1$ is a norm and ℓ^1 is a normed linear space (Problem 7.5a).

Example. Let ℓ^{∞} be the set of all bounded sequences of real numbers. Define $\|\cdot\|_{\infty}$ as

$$\|\{a_k\}\|_{\infty} = \sup\{|a_k|\}.$$

Then $\|\cdot\|_{\infty}$ is a norm on ℓ^{∞} and ℓ^{∞} is a normed linear space (Problem 7.5b). Revised: 1/30/2023