Chapter 7. The L^{p} Spaces:
 Completeness and Approximation Section 7.1. Normed Linear Spaces

Note. We assume E is a measurable set. Denote the set of all measurable extended real-valued functions on E that are finite a.e. on E as \mathcal{F}.

Definition. Define an equivalence relation \cong on \mathcal{F} as $f \cong g$ if and only if $f=g$ a.e. on E.

Note. \cong is reflexive, symmetric, and transitive and so \cong really is an equivalence relation. Therefore \cong partitions \mathcal{F} into equivalence classes. We denote the equivalence class containing f as $[f]$. Since f is finite a.e., there is an element of $[f]$ which is finite on all of E. We can define for all $\alpha, \beta \in \mathbb{R}$ and all $[f]$ and $[g]$, a linear combination $\alpha[f]+\beta[g]$ which is the equivalence class containing $\alpha f_{F}+\beta g_{F}$ where $f_{F} \in[f], g_{F} \in[g]$ and f_{F}, g_{F} are finite on E.

Definition. Let X be a set of functions (or equivalence classes of functions). Then X is a linear space if for all $f, g \in X$ (or $[f],[g] \in X)$ and $\alpha, \beta \in \mathbb{R}, \alpha f+\beta g \in X$ (or $\alpha[f]+\beta[g] \in X$).

Example 7.1.A. Let $1 \leq p<\infty$. Define $L^{p}(E)$ to be the set of equivalence classes of functions for which $\int_{E}|f|^{p}<\infty$. Notice that for $a, b \in \mathbb{R}$,

$$
|a+b| \leq|a|+|b| \leq 2 \max \{|a|,|b|\}
$$

and so

$$
|a+b|^{p} \leq 2^{p}(\max \{|a|,|b|\})^{p} \leq 2^{p}\left(|a|^{p}+|b|^{p}\right) .
$$

So if $f, g \in L^{p}(E)$, then

$$
|f+g|^{p} \leq 2^{p}\left(|f|^{p}+|g|^{p}\right) \text { on } E
$$

and

$$
\begin{aligned}
\int_{E}|f+g|^{p} & \leq \int_{E} 2^{p}\left(|f|^{p}+|g|^{p}\right) \text { by monotonicity of the integral } \\
& =2^{p}\left(\int_{E}|f|^{p}+\int_{E}|g|^{p}\right) \text { by linearity } \\
& <\infty
\end{aligned}
$$

and so $f+g \in L^{p}(E)$. Also, $f \in L^{p}(E)$ implies that $\alpha f \in L^{p}(E)$ for all $\alpha \in \mathbb{R}$. So $L^{p}(E)$ is a linear space.

Definition. For $f \in \mathcal{F}$, we say f is essentially bounded if for some $M \geq 0$ (called an essential upper bound) for which $|f(x)| \leq M$ for almost all $x \in E$. Define $L^{\infty}(E)$ to be the set of equivalence classes of the essentially bounded functions on E.

Note. "Clearly" $L^{\infty}(E)$ is a linear space.

Note. For our study of Banach and Hilbert spaces, we will no longer distinguish between a function f and the equivalence class $[f]$.

Note. We will see parallels between the L^{p} spaces $(1 \leq p \leq \infty)$ and vector spaces.

Definition. Let X be a linear space. A real-valued functional (i.e., a function with X as its domain and \mathbb{R} as its codomain) $\|\cdot\|$ on X is a norm if for all $f, g \in X$ and for all $\alpha \in \mathbb{R}$:
(1) $\|f+g\| \leq\|f\|+\|g\|$ (Triangle Inequality).
(2) $\|\alpha f\|=|\alpha|\|f\|$ (Positive Homogeneity).
(3) $\|f\| \geq 0$ and $\|f\|=0$ if and only if $f=0$ (Nonnegativity).

Definition. A normed linear space is a linear space X with a norm $\|\cdot\|$.

Example 7.1.B. Define $\|\cdot\|_{1}$ on $L^{1}(E)$ as $\|f\|_{1}=\int_{E}|f|$. To verify $\|\cdot\|_{1}$ is a norm, notice that for $f, g \in L^{1}(E), f$ and g are finite a.e. on E (or WLOG everywhere on E) and so $|f+g| \leq|f|+|g|$ a.e. on E. So by monotonicity and linearity of integration

$$
\|f+g\|_{1}=\int_{E}|f+g| \leq \int_{E}(|f|+|g|)=\int_{E}|f|+\int_{E}|g|=\|f\|_{1}+\|g\|_{1},
$$

and therefore $\|\cdot\|_{1}$ satisfies the Triangle Inequality. Next, for $\alpha \in \mathbb{R}$

$$
\|\alpha f\|_{1}=\int_{E}|\alpha f|=\int_{E}|\alpha||f|=|\alpha| \int_{E}|f|=|\alpha|\|f\|_{1},
$$

and Positive Homogeneity holds. Finally,

$$
\|f\|_{1}=\int_{E}|f|=0 \text { if and only if } f=0 \text { a.e. on } E
$$

by Proposition 4.9, and so nonnegativity clearly holds.

Example 7.1.C. Define $\|\cdot\|_{\infty}$ on $L^{\infty}(E)$ as

$$
\begin{aligned}
\|f\|_{\infty} & =\inf \{M \mid M \text { is an essential upper bound of } f \text { on } E\} \\
& =\inf \{M| | f \mid \leq M \text { a.e. on } E\} .
\end{aligned}
$$

$\|f\|_{\infty}$ is called the essential supremum of f. It can be shown that $\|\cdot\|_{\infty}$ is a norm (see page 138) and hence $L^{\infty}(E)$ is a normed linear space.

Example. Let $[a, b] \subset \mathbb{R}$. Denote the linear space of continuous real-valued functions on $[a, b]$ as $C[a, b]$. Define for $f \in C[a, b]$

$$
\|f\|_{\max }=\max _{x \in[a, b]}|f(x)| .
$$

It can be shown that $\|\cdot\|_{\max }$ is a norm (called the maximum norm) and so $C[a, b]$ is a normed linear space (Problem 7.1).

Example. Let ℓ^{1} be the set of all absolutely summable sequences of real numbers:

$$
\ell^{1}=\left\{\left(a_{1}, a_{2}, \ldots\right)\left|\sum_{k=1}^{\infty}\right| a_{k} \mid<\infty\right\} .
$$

Define $\|\cdot\|_{1}$ on ℓ^{1} as

$$
\left\|\left\{a_{k}\right\}\right\|_{1}=\sum_{k=1}^{\infty}\left|a_{k}\right| .
$$

Then $\|\cdot\|_{1}$ is a norm and ℓ^{1} is a normed linear space (Problem 7.5a).

Example. Let ℓ^{∞} be the set of all bounded sequences of real numbers. Define $\|\cdot\|_{\infty}$ as

$$
\left\|\left\{a_{k}\right\}\right\|_{\infty}=\sup \left\{\left|a_{k}\right|\right\} .
$$

Then $\|\cdot\|_{\infty}$ is a norm on ℓ^{∞} and ℓ^{∞} is a normed linear space (Problem 7.5b).

