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Chapter 7. The Lp Spaces:

Completeness and Approximation

Section 7.1. Normed Linear Spaces

Note. We assume E is a measurable set. Denote the set of all measurable extended

real-valued functions on E that are finite a.e. on E as F .

Definition. Define an equivalence relation ∼= on F as f ∼= g if and only if f = g

a.e. on E.

Note. ∼= is reflexive, symmetric, and transitive and so ∼= really is an equivalence

relation. Therefore ∼= partitions F into equivalence classes. We denote the equiv-

alence class containing f as [f ]. Since f is finite a.e., there is an element of [f ]

which is finite on all of E. We can define for all α, β ∈ R and all [f ] and [g], a

linear combination α[f ] + β[g] which is the equivalence class containing αfF + βgF

where fF ∈ [f ], gF ∈ [g] and fF , gF are finite on E.

Definition. Let X be a set of functions (or equivalence classes of functions). Then

X is a linear space if for all f, g ∈ X (or [f ], [g] ∈ X) and α, β ∈ R, αf + βg ∈ X

(or α[f ] + β[g] ∈ X).
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Example 7.1.A. Let 1 ≤ p < ∞. Define Lp(E) to be the set of equivalence classes

of functions for which

∫
E

|f |p < ∞. Notice that for a, b ∈ R,

|a + b| ≤ |a|+ |b| ≤ 2 max{|a|, |b|}

and so

|a + b|p ≤ 2p (max{|a|, |b|})p ≤ 2p(|a|p + |b|p).

So if f, g ∈ Lp(E), then

|f + g|p ≤ 2p(|f |p + |g|p) on E

and ∫
E

|f + g|p ≤
∫

E

2p(|f |p + |g|p) by monotonicity of the integral

= 2p

(∫
E

|f |p +

∫
E

|g|p
)

by linearity

< ∞

and so f + g ∈ Lp(E). Also, f ∈ Lp(E) implies that αf ∈ Lp(E) for all α ∈ R. So

Lp(E) is a linear space.

Definition. For f ∈ F , we say f is essentially bounded if for some M ≥ 0 (called

an essential upper bound) for which |f(x)| ≤ M for almost all x ∈ E. Define L∞(E)

to be the set of equivalence classes of the essentially bounded functions on E.

Note. “Clearly” L∞(E) is a linear space.
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Note. For our study of Banach and Hilbert spaces, we will no longer distinguish

between a function f and the equivalence class [f ].

Note. We will see parallels between the Lp spaces (1 ≤ p ≤ ∞) and vector spaces.

Definition. Let X be a linear space. A real-valued functional (i.e., a function

with X as its domain and R as its codomain) ‖ ·‖ on X is a norm if for all f, g ∈ X

and for all α ∈ R:

(1) ‖f + g‖ ≤ ‖f‖+ ‖g‖ (Triangle Inequality).

(2) ‖αf‖ = |α|‖f‖ (Positive Homogeneity).

(3) ‖f‖ ≥ 0 and ‖f‖ = 0 if and only if f = 0 (Nonnegativity).

Definition. A normed linear space is a linear space X with a norm ‖ · ‖.

Example 7.1.B. Define ‖ ·‖1 on L1(E) as ‖f‖1 =
∫

E |f |. To verify ‖ ·‖1 is a norm,

notice that for f, g ∈ L1(E), f and g are finite a.e. on E (or WLOG everywhere

on E) and so |f + g| ≤ |f | + |g| a.e. on E. So by monotonicity and linearity of

integration

‖f + g‖1 =

∫
E

|f + g| ≤
∫

E

(|f |+ |g|) =

∫
E

|f |+
∫

E

|g| = ‖f‖1 + ‖g‖1,

and therefore ‖ · ‖1 satisfies the Triangle Inequality. Next, for α ∈ R

‖αf‖1 =

∫
E

|αf | =
∫

E

|α||f | = |α|
∫

E

|f | = |α|‖f‖1,
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and Positive Homogeneity holds. Finally,

‖f‖1 =

∫
E

|f | = 0 if and only if f = 0 a.e. on E

by Proposition 4.9, and so nonnegativity clearly holds. �

Example 7.1.C. Define ‖ · ‖∞ on L∞(E) as

‖f‖∞ = inf{M | M is an essential upper bound of f on E}

= inf{M | |f | ≤ M a.e. on E}.

‖f‖∞ is called the essential supremum of f . It can be shown that ‖ · ‖∞ is a norm

(see page 138) and hence L∞(E) is a normed linear space.

Example. Let [a, b] ⊂ R. Denote the linear space of continuous real-valued

functions on [a, b] as C[a, b]. Define for f ∈ C[a, b]

‖f‖max = max
x∈[a,b]

|f(x)|.

It can be shown that ‖ · ‖max is a norm (called the maximum norm) and so C[a, b]

is a normed linear space (Problem 7.1).
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Example. Let `1 be the set of all absolutely summable sequences of real numbers:

`1 =

{
(a1, a2, . . .)

∣∣∣∣∣
∞∑

k=1

|ak| < ∞

}
.

Define ‖ · ‖1 on `1 as

‖{ak}‖1 =
∞∑

k=1

|ak|.

Then ‖ · ‖1 is a norm and `1 is a normed linear space (Problem 7.5a).

Example. Let `∞ be the set of all bounded sequences of real numbers. Define

‖ · ‖∞ as

‖{ak}‖∞ = sup{|ak|}.

Then ‖ · ‖∞ is a norm on `∞ and `∞ is a normed linear space (Problem 7.5b).
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