Section 7.2. The Inequalities of Young, Hölder, and Minkowski

Note. We now put a norm on $L^p(E)$ for 1 ... of course, we'll need to confirm that it is a norm.

Definition. For measurable $E, 1 and <math>f \in L^p(E)$, define

$$||f||_p = \left\{ \int_E |f|^p \right\}^{1/p}$$

Note. $\|\cdot\|_p$ satisfies Positive homogeneity:

$$\|\alpha f\|_{p} = \left\{\int_{E} |\alpha f|^{p}\right\}^{1/p} = |\alpha| \left\{\int_{E} |f|^{p}\right\}^{1/p} = |\alpha| \|f\|_{p}.$$

 $\|\cdot\|_p$ satisfies Nonnegativity: Since $|f| \ge 0$, then

$$||f||_p = \left\{ \int_E |f|^p \right\}^{1/p} \ge 0$$

and by Proposition 4.9,

$$||f||_p = \left\{ \int_E |f|^p \right\}^{1/p} = 0$$
 if and only if $|f| = 0$ a.e. on E ,

that is, if and only if $f \in [0]$ (where [0] is the equivalence class containing the zero function). The Triangle Inequality is more difficult to establish and that's the purpose of this section.

Definition. The *conjugate* of $p \in (1, \infty)$ is the number $q = \frac{p}{p-1}$. (Notice that $\frac{1}{p} + \frac{1}{q} = 1$.) 1 and ∞ are conjugates of each other.

Note. We'll see an intimate relationship between the spaces L^p and L^q .

Young's Inequality.

For 1 and q the conjugate of p, for any positive a and b,

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Theorem 7.1. Hölder's Inequality. Let E be a measurable set, $1 \le p < \infty$, and q the conjugate of p. If $f \in L^p(E)$ and $g \in L^q(E)$, then fg is integrable over E and

$$\int_E |fg| \le \|f\|_p \|g\|_q$$

This is *Hölder's Inequality*. Moreover, if $f \neq 0$, then the function

$$f^* = \begin{cases} \|f\|_p^{1-p} \operatorname{sgn}(f)|f|^{p-1} & \text{if } p > 1\\ \operatorname{sgn}(f) & \text{if } p = 1 \end{cases}$$

is an element of $L^q(E)$,

$$\int_{E} f f^{*} = \|f\|_{p} \tag{4}$$

and $||f^*||_q = 1$.

Definition. For $f \in L^p(E)$, $f \neq 0$, the function f^* defined in Theorem 7.1 is the *conjugate function* of f.

Note. We will use Hölder's Inequality to prove the Triangle Inequality in $L^p(E)$. In \mathbb{R}^n , we use the Cauchy-Schwarz Inequality (or simply the "Schwarz Inequality"), which states that for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ we have $|\mathbf{v} \cdot \mathbf{w}| \leq ||\mathbf{v}|| ||\mathbf{w}||$, to prove the triangle inequality as follows:

$$\|\mathbf{v} + \mathbf{w}\|^{2} = (\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} + \mathbf{w})$$

$$= \mathbf{v} \cdot \mathbf{v} + 2\mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{w}$$

$$= \|\mathbf{v}\|^{2} + 2\mathbf{v} \cdot \mathbf{w} + \|\mathbf{w}\|^{2}$$

$$\leq \|\mathbf{v}\|^{2} + 2\|\mathbf{v}\| \|\mathbf{w}\| + \|\mathbf{w}\|^{2} \text{ by the Cauchy-Schwarz Inequality}$$

$$= (\|\mathbf{v}\| + \|\mathbf{w}\|)^{2}$$

So there should be a parallel between Hölder's Inequality and the Cauchy-Schwarz Inequality. This can be seen when we take p = q = 2, in which case Hölder implies $\int_{E} |fg| \leq ||f||_2 ||g||_2$ (Royden and Fitzpatrick state this as the Cauchy-Schwarz Inequality on page 142). The right hand side of this inequality has norms as we would expect, and the left hand side consists of an integral *similar* to the idea of a dot product in \mathbb{R}^n . As we'll see, the idea of a dot product (or "inner product") is only valid in $L^2(E)$.

Corollary 7.2. Let *E* be a measurable set and $1 . Suppose <math>\mathcal{F}$ is a family of functions in $L^p(E)$ that is bounded in $L^p(E)$ in the sense that there is a constant *M* for which $||f||_p \leq M$ for all $f \in \mathcal{F}$. Then the family is uniformly integrable on *E*.

Minkowski's Inequality.

Let E be measurable and $1 \le p \le \infty$. If f and g belong to $L^p(E)$, then $f + g \in L^p(E)$ and

$$|f + g||_p \le ||f||_p + ||g||_p$$

Note. Minkowski's Inequality both (1) proves that L^p is closed under addition (and hence is a linear space), and (2) proves that $\|\cdot\|_p$ is a norm. Therefore $L^p(E)$ is a normed linear space. In fact, when $m(E) < \infty$, the $L^p(E)$ spaces are nested.

Corollary 7.3. Let E be measurable, $m(E) < \infty$, and $1 \le p_1 < p_2 \le \infty$. Then $L^{p_2}(E) \subset L^{p_1}(E)$. Furthermore, $||f||_{p_1} \le c||f||_{p_2}$ for all $f \in L^{p_2}(E)$ where $c = (m(E))^{(p_2-p_1)/(p_1p_2)}$ if $p_2 < \infty$ and $c = (m(E))^{1/p_1}$ if $p_2 = \infty$.

Note. When $m(E) < \infty$, the inclusion in Corollary 7.3 is strict. For example, with E = (0, 1] and α such that $-1/p_1 < \alpha < -1/p_2$. Define $f(x) = x^{\alpha}$. Then $f \in L^{p_1}(E)$ and $f \notin L^{p_2}(E)$ (where, as above, $1 \le p_1 < p_2 < \infty$). This is confirmed in Problem 7a.

Note. If $m(E) = \infty$, there is no inclusion relationship between the L^p spaces. For example, with $E = (0, \infty)$ and $f(x) = \frac{x^{-1/2}}{1 + |\ln x|}$, then $f \in L^p(0, \infty)$ if and only if p = 2. This is supposed to be Problem 7b, but there is a typographical error in the book.

Note. To this point, we have not established a relationship between the L^p spaces for $1 \le p < \infty$. As is often the case, " ∞ " plays the role of a limit. That is the case here, as is to be demonstrated in Problem 7.18:

Problem 7.18. Assume $m(E) < \infty$. For $f \in L^{\infty}(E)$,

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}.$$

Revised: 1/30/2023