Section 7.2. The Inequalities of Young,
 Hölder, and Minkowski

Note. We now put a norm on $L^{p}(E)$ for $1<p<\infty$... of course, we'll need to confirm that it is a norm.

Definition. For measurable $E, 1<p<\infty$ and $f \in L^{p}(E)$, define

$$
\|f\|_{p}=\left\{\int_{E}|f|^{p}\right\}^{1 / p}
$$

Note. $\|\cdot\|_{p}$ satisfies Positive homogeneity:

$$
\|\alpha f\|_{p}=\left\{\int_{E}|\alpha f|^{p}\right\}^{1 / p}=|\alpha|\left\{\int_{E}|f|^{p}\right\}^{1 / p}=|\alpha|\|f\|_{p}
$$

$\|\cdot\|_{p}$ satisfies Nonnegativity: Since $|f| \geq 0$, then

$$
\|f\|_{p}=\left\{\int_{E}|f|^{p}\right\}^{1 / p} \geq 0
$$

and by Proposition 4.9,

$$
\|f\|_{p}=\left\{\int_{E}|f|^{p}\right\}^{1 / p}=0 \text { if and only if }|f|=0 \text { a.e. on } E,
$$

that is, if and only if $f \in[0]$ (where [0] is the equivalence class containing the zero function). The Triangle Inequality is more difficult to establish and that's the purpose of this section.

Definition. The conjugate of $p \in(1, \infty)$ is the number $q=\frac{p}{p-1}$. (Notice that $\frac{1}{p}+\frac{1}{q}=1$.) 1 and ∞ are conjugates of each other.

Note. We'll see an intimate relationship between the spaces L^{p} and L^{q}.

Young's Inequality.
For $1<p<\infty$ and q the conjugate of p, for any positive a and b,

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

Theorem 7.1. Hölder's Inequality. Let E be a measurable set, $1 \leq p<\infty$, and q the conjugate of p. If $f \in L^{p}(E)$ and $g \in L^{q}(E)$, then $f g$ is integrable over E and

$$
\int_{E}|f g| \leq\|f\|_{p}\|g\|_{q} .
$$

This is Hölder's Inequality. Moreover, if $f \neq 0$, then the function

$$
f^{*}=\left\{\begin{array}{cc}
\|f\|_{p}^{1-p} \operatorname{sgn}(f)|f|^{p-1} & \text { if } p>1 \\
\operatorname{sgn}(f) & \text { if } p=1
\end{array}\right.
$$

is an element of $L^{q}(E)$,

$$
\begin{equation*}
\int_{E} f f^{*}=\|f\|_{p} \tag{4}
\end{equation*}
$$

and $\left\|f^{*}\right\|_{q}=1$.

Definition. For $f \in L^{p}(E), f \neq 0$, the function f^{*} defined in Theorem 7.1 is the conjugate function of f.

Note. We will use Hölder's Inequality to prove the Triangle Inequality in $L^{p}(E)$. In \mathbb{R}^{n}, we use the Cauchy-Schwarz Inequality (or simply the "Schwarz Inequality"), which states that for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ we have $|\mathbf{v} \cdot \mathbf{w}| \leq\|\mathbf{v}\|\|\mathbf{w}\|$, to prove the triangle inequality as follows:

$$
\begin{aligned}
\|\mathbf{v}+\mathbf{w}\|^{2} & =(\mathbf{v}+\mathbf{w}) \cdot(\mathbf{v}+\mathbf{w}) \\
& =\mathbf{v} \cdot \mathbf{v}+2 \mathbf{v} \cdot \mathbf{w}+\mathbf{w} \cdot \mathbf{w} \\
& =\|\mathbf{v}\|^{2}+2 \mathbf{v} \cdot \mathbf{w}+\|\mathbf{w}\|^{2} \\
& \leq\|\mathbf{v}\|^{2}+2\|\mathbf{v}\|\|\mathbf{w}\|+\|\mathbf{w}\|^{2} \text { by the Cauchy-Schwarz Inequality } \\
& =(\|\mathbf{v}\|+\|\mathbf{w}\|)^{2}
\end{aligned}
$$

So there should be a parallel between Hölder's Inequality and the Cauchy-Schwarz Inequality. This can be seen when we take $p=q=2$, in which case Hölder implies $\int_{E}|f g| \leq\|f\|_{2}\|g\|_{2}$ (Royden and Fitzpatrick state this as the Cauchy-Schwarz Inequality on page 142). The right hand side of this inequality has norms as we would expect, and the left hand side consists of an integral similar to the idea of a dot product in \mathbb{R}^{n}. As we'll see, the idea of a dot product (or "inner product") is only valid in $L^{2}(E)$.

Corollary 7.2. Let E be a measurable set and $1<p<\infty$. Suppose \mathcal{F} is a family of functions in $L^{p}(E)$ that is bounded in $L^{p}(E)$ in the sense that there is a constant M for which $\|f\|_{p} \leq M$ for all $f \in \mathcal{F}$. Then the family is uniformly integrable on E.

Minkowski's Inequality.

Let E be measurable and $1 \leq p \leq \infty$. If f and g belong to $L^{p}(E)$, then $f+g \in$ $L^{p}(E)$ and

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

Note. Minkowski's Inequality both (1) proves that L^{p} is closed under addition (and hence is a linear space), and (2) proves that $\|\cdot\|_{p}$ is a norm. Therefore $L^{p}(E)$ is a normed linear space. In fact, when $m(E)<\infty$, the $L^{p}(E)$ spaces are nested.

Corollary 7.3. Let E be measurable, $m(E)<\infty$, and $1 \leq p_{1}<p_{2} \leq \infty$. Then $L^{p_{2}}(E) \subset L^{p_{1}}(E)$. Furthermore, $\|f\|_{p_{1}} \leq c\|f\|_{p_{2}}$ for all $f \in L^{p_{2}}(E)$ where $c=(m(E))^{\left(p_{2}-p_{1}\right) /\left(p_{1} p_{2}\right)}$ if $p_{2}<\infty$ and $c=(m(E))^{1 / p_{1}}$ if $p_{2}=\infty$.

Note. When $m(E)<\infty$, the inclusion in Corollary 7.3 is strict. For example, with $E=(0,1]$ and α such that $-1 / p_{1}<\alpha<-1 / p_{2}$. Define $f(x)=x^{\alpha}$. Then $f \in L^{p_{1}}(E)$ and $f \notin L^{p_{2}}(E)$ (where, as above, $1 \leq p_{1}<p_{2}<\infty$). This is confirmed in Problem 7a.

Note. If $m(E)=\infty$, there is no inclusion relationship between the L^{p} spaces. For example, with $E=(0, \infty)$ and $f(x)=\frac{x^{-1 / 2}}{1+|\ln x|}$, then $f \in L^{p}(0, \infty)$ if and only if $p=2$. This is supposed to be Problem 7b, but there is a typographical error in the book.

Note. To this point, we have not established a relationship between the L^{p} spaces for $1 \leq p<\infty$. As is often the case, " ∞ " plays the role of a limit. That is the case here, as is to be demonstrated in Problem 7.18:

Problem 7.18. Assume $m(E)<\infty$. For $f \in L^{\infty}(E)$,

$$
\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}
$$

