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Section 7.3. Lp is Complete: The Riesz-Fischer Theorem

Note. In this section, we introduce the equipment to show that Lp is complete

for 1 ≤ p ≤ ∞. Therefore these spaces are complete normed linear spaces (such a

space is called a Banach space).

Definition. A sequence {fn} in a linear space X with norm ‖·‖ is said to converge

to f ∈ X if lim
n→∞

‖f − fn‖ = 0, denoted {fn} → f or lim
n→∞

fn = f .

Definition. A sequence {fn} in a normed linear space is said to be Cauchy if for

all ε > 0 there is N ∈ N such that ‖fn − fm‖ < ε for all m, n ≥ N .

Definition. A normed linear space X is said to be complete if every Cauchy

sequence in X converges to an element of X. A complete normed linear space is a

Banach space.

Note. In the setting of R (an ordered field), completeness is dealt with in terms

of a upper bounds and least upper bounds. The Axiom of completeness states

that every set of real numbers with an upper bound has a least upper bound. It

is this axiom that makes the real numbers a continuum (though you may have

been introduced to the idea in terms of Dedekind cuts, which are equivalent to

the Axiom of completeness). More details are in my online notes for Analysis 1

(MATH 4217/5217) on Section 1.3. The Completeness Axiom.

https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
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Note. In Lp we do not have an ordering so there is no “upper” or “least.” So we

approach completeness in terms of Cauchy sequences, which only require the idea

of distance (which we have, since we have a norm on Lp for each 1 ≤ p ≤ ∞). We

know that a sequence of real numbers is Cauchy if and only if it converges (see

my Analysis 1 notes on Section 2.3. Bolzano-Weierstrass Theorem). Think of it as:

A Cauchy sequence wants to converge! . . . and a Cauchy sequence will converge,

unless there is a hole in the space at the “point” to which the Cauchy sequence

wants to converge. For example, a sequence of real number (no terms of which is
√

2) which converges to
√

2 will NOT converge in the space R \ {
√

2}, since there

is a hole in the space at the point to which the sequence want to converge. We

also use Cauchy sequences to define completeness in the complex field (which also

has no ordering). See my online notes for Complex Analysis 1 (MATH 5510) on

Section II.3. Sequences and Completeness, where completeness is defined in terms

of Cauchy sequences in a metric space in general, and used to show that C is

complete (see Proposition II.3.6 in the complex notes).

Example. R under absolute value is a Banach space. Rn is a Banach space under

the Euclidean norm. The function space C[a, b] under the max norm is a Banach

space (Problem 7.31). L∞(E) is a Banach space (Problem 7.33).

Proposition 7.4. Let X be a normed linear space. Then every convergent se-

quence in X is Cauchy. Moreover, a Cauchy sequence in X converges if it has a

convergent subsequence.

https://faculty.etsu.edu/gardnerr/4217/notes/2-3.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/II-3.pdf
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Definition. A sequence {fn} in a normed linear space is rapidly Cauchy provided

there is a convergent series of positive numbers
∞∑

k=1

εk for which ‖fk+1 − fk‖ ≤ ε2
k

for all k.

Note 7.3.A. A sequence may be Cauchy but not rapidly Cauchy. Consider the

normed linear space R with norm of absolute value. Let

{fk} =

{
k∑

i=1

1

i2

}
.

Then {fn} consists of partial sums of the p-series with p = 2, and so {fn} converges

(to π2/6) and so is Cauchy. However,

|fk+1 − fk| =

∣∣∣∣∣
k+1∑
i=1

1

i2
−

k∑
i=1

1

i2

∣∣∣∣∣ =
1

(k + 1)2 = ε2
k

and so εk must be 1/(k + 1). But then
∞∑

k=1

εk =
∞∑

k=1

1

k + 1
diverges (Harmonic

series) and so {fk} is not rapidly Cauchy (this is Problem 7.23).

Note. However, rapidly Cauchy sequences are Cauchy:

Proposition 7.5. Let X be a normed linear space. Then every rapidly Cauchy

sequence in X is Cauchy. Furthermore every Cauchy sequence has a rapidly Cauchy

subsequence.

Note. We need the next result for the proof that the Lp spaces are complete.
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Theorem 7.6. Let E be measurable and 1 ≤ p ≤ ∞. Then every rapidly Cauchy

sequence in Lp(E) converges both with respect to the Lp norm and pointwise a.e.

on E to a function in Lp(E).

Note. The following allows us to conclude that Lp(E) is a Banach space for

1 ≤ p ≤ ∞.

The Riesz-Fischer Theorem. Let E be measurable and 1 ≤ p ≤ ∞. Then

Lp(E) is a Banach space. Moreover, if {fn} → f in Lp then there is a subsequence

of {fn} which converges pointwise a.e. on E to f .

Note. The Riesz-Fischer Theorem implies that Lp-convergence implies pointwise

a.e. convergence of a subsequence. However, the converse does not hold. Let E =

[0, 1], 1 ≤ p < ∞ and fn = n1/pχ(0,1/n]. Then fn → 0 pointwise but ‖fn − 0‖p = 1

and so fn does not converge to 0 with respect to the Lp norm.
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Note. The next theorem gives necessary and sufficient conditions for pointwise

convergence of a sequence of functions in Lp to imply convergence with respect to

the Lp norm in Lp (that is, for pointwise convergence to imply Lp convergence).

Theorem 7.7. Let E be measurable and 1 ≤ p < ∞. Suppose {fn} is a sequence

in Lp(E) that converges pointwise a.e. on E to f ∈ Lp(E). Then {fn} → f with

respect to the Lp norm if and only if

lim
n→∞

∫
E

|fn|p =

∫
E

|f |p,

that is ‖fn‖p → ‖f‖p.

Note. You have been exposed to the `p sequence spaces, 1 ≤ p ≤ ∞, in the

homework. These spaces are also examples of Banach spaces. Another example is

the space

Rω = {x = (x1, x2, . . .) | xi ∈ R for i ∈ N}.

Rω is a linear space where for any a, b ∈ R and x,y ∈ Rω we define ax + by = z

with zi = axi + byi for all i ∈ N. It is shown in our Introduction to Topology

(MATH 4357/5357) class that

D(x,y) = sup
i∈N

{d(xi, yi)/i},

where d(a, b) = min{|a− b|, a}, is a metric on Rω and so a norm on Rω is

‖x‖ = D(x,0) = sup
i∈N

{d(xi, 0)/i} = sup
i∈N

{min{|xi|, 1}/i} = sup
i∈N

{min{|xi|/i, 1/i}}.

So Rω is a normed linear space (notice that ‖x‖ ≤ 1 for all x ∈ Rω). In fact, Rω

is complete with respect to the metric, and so Rω is an example of Banach space.
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See my online notes for Introduction to Topology (MATH 4357/5357) on Section

20. The Metric Topology and Section 43. Complete Metric Spaces.
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