Section 7.4. Approximation and Separability

Note. We want to approximate elements of $L^p(E)$ with more "familiar" functions, such as continuous functions.

Definition. Let X be a normed linear space with norm $\|\cdot\|$. Given two subsets \mathcal{F} and \mathcal{G} of X with $\mathcal{F} \subset \mathcal{G}$, we say that \mathcal{F} is *dense* in \mathcal{G} , if for each function $g \in \mathcal{G}$ and $\varepsilon > 0$, there is a function $f \in \mathcal{F}$ for which $\|f - g\| < \varepsilon$.

Note 7.4.A. Let \mathcal{F} be a subset of a normed linear space X. By Exercise 7.36, \mathcal{F} is dense in X if and only if each $g \in X$ is the limit of a sequence in \mathcal{F} .

Proposition 7.9. Let *E* be measurable and $1 \le p \le \infty$. Then the subspace of simple functions in $L^p(E)$ is dense in $L^p(E)$.

Note. The following is a related but "simpler" result.

Proposition 7.10. Let [a, b] be a closed, bounded interval and $1 \le p < \infty$. Then the subspace of step functions on [a, b] is dense in $L^p([a, b])$.

Definition. A normed linear space X is *separable* if there is a countable subset that is dense in X.

Note. We'll see the idea of separability again when we deal with Hilbert spaces. In fact, sometimes a Hilbert space is defined as a separable inner product space.

Theorem 7.11. Let *E* be measurable and $1 \le p < \infty$. Then $L^p(E)$ is separable.

Note 7.4.B. L^{∞} is not, in general, separable. Consider $L^{\infty}([a, b])$ and suppose there is a countable set $\{f_n\}_{n=1}^{\infty}$ that is dense in $L^{\infty}([a, b])$. For each $x \in [a, b]$, define $\eta(x) \in \mathbb{N}$ for which $\|\chi_{[a,x]} - f_{\eta(x)}\|_{\infty} < 1/2$ (which can be done since $\{f_n\}$ is dense in $L^{\infty}([a, b])$). For $x_1, x_2 \in [a, b]$ with $x_1 \neq x_2$, we have $\|\chi_{[a,x_1]} - \chi_{[a,x_2]}\|_{\infty} = 1$ and so $f_{\eta(x_1)} \neq f_{\eta(x_2)}$ by the Triangle Inequality and so $\eta(x_1) \neq \eta(x_2)$. That is η is a one-to-one mapping from [a, b] into \mathbb{N} . But this is impossible. Therefore, $\{f_n\}$ is not dense in $L^{\infty}([a, b])$ and $L^{\infty}([a, b])$ is not separable. This example is useful in the proof of Exercise 7.42.

Theorem 7.12. Let *E* be measurable and $1 \le p < \infty$. Then $C_c(E)$, the linear space of continuous functions on *E* that vanish outside a bounded set, is dense in $L^p(E)$.

Revised: 2/15/2023