8.2. Weak Sequential Convergence in LP 1

Section 8.2. Weak Sequential Convergence in L”

Note. The Bolzano-Weierstrass Theorem states that an infinite set of real numbers
has a limit point, and implies that every bounded sequence of real numbers has a
convergent subsequence (these results also hold in R"). It is easily seen that this

can be violated in ¢? by considering the sequence
(1,0,0,...),(0,1,0,...),(0,0,1,0,...),...,(0,0,...,0,1,0,...),...

In fact, for any infinite dimensional normed linear space, there is a bounded se-
quence that has no convergent subsequence (this is Riesz’s Theorem of Section 13.3.
Compactness Lost: Infinite Dimensional Normed Linear Spaces). In this section,
we introduce a new kind of convergence for sequences in L? and give some necessary

and sufficient conditions for a bounded sequence to converge in this new sense.

Example. Let I =[0,1). For n € N, the sequence of Radamacher functions {f,}

is defined as

k k+1
folz) = (=1)F for%§x<2inwher60§k§2”—l.

Notice that for m # n, f, # fm on a set of measure 1/2 (say m < n, then the

Qn—m

intervals on which f,,, is constant are each cut into pieces of the same size and

fn differs from f,,, on half of these pieces). Fix 1 < p < oco. The {f,} is a bounded
sequence in LP(I) since ||f||, =1 for all n € N. For n # m, |f, — fin| =2 on a set

of measure 1/2, and so

1/p 1 1/p
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So no subsequence of {f,} is Cauchy in L”(I), and hence no subsequence of { f,,}
converges. So this is an example of a bounded sequence (in LP(I)) with no conver-

gent subsequence.

Definition. Let X be a normed linear space. A sequence {f,} in X is said to
converge weakly in X to f € X provided lim,, o T(f,) = T(f) for all T € X*.
This is denoted {f,} — f in X.

Note. Notice that the convergence of {f,} to f in X (still denoted “{f,} — f
in X”) is stronger than weak convergence since it implies that for any 7' € X* we

have
T(f,) —T(f) = |T(fn— f)| since T is linear

< |\T|l«|lf» = f|| by the definition of || T,
soif {f,} — fin X (ie, ||fn — f|| = 0) then |T(f,) = T(f)| — 0 (i.e., T(fn) =

T(f)). So convergence in X is sometimes called strong convergence.
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Proposition 8.6. Let E be a measurable set, 1 < p < oo, and ¢ the conjugate of
p (i.e., ]l)—l— % =1). Then {f,} — f in LP(F) if and only if lim

lim (/ngn) = /ng
for all g € LY(E).

Proof. This follows from the definition of weak convergence and the fact that by
the Riesz Representation Theorem, 7' € X* if and only if T'(f) = | g 9/ for some
g€ LYE). |

Lemma A. The limit of a weakly convergent sequence in LP(F) is unique, 1 <

p < o0.

Theorem 8.7. Let f be a measurable set and 1 < p < oo. Suppose {f,} — f in
LP(E). Then {f,} is bounded in LP(E) and ||f||, < liminf || f,||,-

Note. The proof of Theorem 8.7 is long and requires Problem 8.18.
Note. The following is a generalization of Proposition 8.6.

Corollary 8.8. Let E be a measurable set, a < p < oo, and ¢ the conjugate of

p. Suppose {f,} converges weakly to f in LP(F) ({f,} — f in LP(F)) and {g,}

converges strongly to g in LY(E) ({g.} — ¢ in L'(E)). Then lim (/ gnfn> =
n—oo E

/ng-
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Definition. Let S be a subset of linear space X. the linear span of S is the
collection of all linear combinations of functions in S. That is, the linear span of
S is the collection of all functions of the form f = >77_; ayfi where o, € R and

fr€S.

Proposition 8.9. Let E be a measurable set, 1 < p < oo, and let ¢ be the

conjugate of p. Assume F is a subset of LY(E) whose linear span is dense in

Li(E). Let {f.} be a bounded sequence in LP(F) and let f belong to LP(E). Then
{f.} — f in LP(E) if and only if lim (/ fng> = / fg for all g € F.

Note. The power of Proposition 8.9 is seen in the following two theorems.

Theorem 8.10. Let E be a nonmeasurable set and 1 < p < oo, suppose {f,} is a
bounded sequence in LP(E) and f belongs to LP(F). Then {f,} — f in LP(E
and only if for every measurable subset A of E we have limb — oo < / fn> / f.

If p> 1 (and so ¢ < 00) it is sufficient to consider sets A of finite measure.

Theorem 8.11. Let [a, b] be a closed, bounded interval and 1 < p < co. Suppose
{fn} is a bounded sequence in LP[a,b] and f € LP[a,b]. Then {f,} — f in LP[a, ]
if and only if lim < / fn> = / f for all x € [a,b]. (This result is false for

n—oo

p = 1 since, as shown in Section 8.4 Problem 8.44, step functions are not dense in

L%[a, ].)
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Note. We now look at how pointwise convergence compares to weak convergence.

Example. Consider p = 1 and ¢ = co. For n € N define f,, = nx(q/n on [0, 1], and

let f =0. Then {f,} converges pointwise to f (notice that it is not L' convergent,

though). Let g = xjo.1) € L*>[0,1]. Then (/ fng> = lim (/ fn> =1, but
[0,1] [0,1]

n—oo
fg= f = 0. So by Proposition 8.6, {f,} does not converge weakly to f.
[0,1] [0,1]
So this is an example of a pointwise convergent bounded sequence in L![0, 1] that

is not weakly convergent in L'[0, 1]. The following result shows that this situation

does not occur for 1 < p < oo.

Theorem 8.12. Let E be a measurable set and 1 < p < oco. Suppose {f,}

is a bounded sequence in LP(F) that converges pointwise a.e. on E to f. Then

{fn} = f in LP(E).

Note. The following result tells us (for 1 < p < oco) when weak convergence in
LP(E) implies strong convergence in LP(E). Notice that it is similar to Theorem
7.7, but the hypothesis of pointwise convergence in Theorem 7.7 is replaced with a

hypothesis of weak sequential convergence.

The Radon-Riesz Theorem.
Let E be a measurable set and 1 < p < oo. Suppose {f,} — f in LP(F). Then

{/n} — [ in LP(E) if and only if lim [|fu[l, = [|f[],-
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Note. The text gives a proof of the Radon-Riesz Theorem for p = 2 (in which case
q = 2 as well), which is surprisingly easy. The case for general p is not presented,
but the text references the book Functional Analysis by Frigyes Riesz and Béla Sz.-
Nagy (Dover Publishing, 1990; pages 78-80). Detailed notes based on this source

are in Supplement. The Radén-Riesz Theorem.

Corollary 8.13. Let E be a measurable set and 1 < p < co. Suppose {f,} — f

in LP(E). Then a subsequence of {f,} converges strongly in LP(E) to f if and only
if £, = liminf [,

Note. The Radon-Riesz Theorem does not hold for p = 1. Let n € N and define
fo(z) = 1 +sin(nz) on I = [—nx,w]. then {f,} — f in LY, 7] where f = 1 by

Theorem 8.11 since

lim ( /_ fn) ~ Jim _j(l—l—sin(nt)) ~ lim <t—%cos(nt)>
~ lim ((x L cosna)) = (n— X cos(mr))) —pgme / 1

n—00 n n -7

™

-7

Also, as above,

lim £, = lim/ 11+ sin(nt)] dt = 27 — | £].

However, {f,} = {1 + sin(nz)} does not converge to f = 1 in L![—7, 7] since

™ w/n
lim ||f, — f]l1 = lim (/ |sin(n$)|dx> = lim <2n/ sin(nz) da:)
n—oo n—oo —r n—oo 0

1 w/n
= lim 2n (——cos(na:))

= lim (—2cosm + 2cos0) =4 # 0.
n—00 n

n—oo

0
So {f.} = fin Ll(]), lim ||f.]l1 = || f|l1, but {f.} does not converge strongly to

fin LY(I).
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