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Section 8.2. Weak Sequential Convergence in Lp

Note. The Bolzano-Weierstrass Theorem states that an infinite set of real numbers

has a limit point, and implies that every bounded sequence of real numbers has a

convergent subsequence (these results also hold in Rn). It is easily seen that this

can be violated in `2 by considering the sequence

(1, 0, 0, . . .), (0, 1, 0, . . .), (0, 0, 1, 0, . . .), . . . , (0, 0, . . . , 0, 1, 0, . . .), . . .

In fact, for any infinite dimensional normed linear space, there is a bounded se-

quence that has no convergent subsequence (this is Riesz’s Theorem of Section 13.3.

Compactness Lost: Infinite Dimensional Normed Linear Spaces). In this section,

we introduce a new kind of convergence for sequences in Lp and give some necessary

and sufficient conditions for a bounded sequence to converge in this new sense.

Example. Let I = [0, 1). For n ∈ N, the sequence of Radamacher functions {fn}

is defined as

fx(x) = (−1)k for
k

2n
≤ x <

k + 1

2n
where 0 ≤ k ≤ 2n − 1.

Notice that for m 6= n, fn 6= fm on a set of measure 1/2 (say m < n, then the

intervals on which fm is constant are each cut into 2n−m pieces of the same size and

fn differs from fm on half of these pieces). Fix 1 ≤ p ≤ ∞. The {fn} is a bounded

sequence in Lp(I) since ‖f‖p = 1 for all n ∈ N. For n 6= m, |fn − fm| = 2 on a set

of measure 1/2, and so

‖fn − fm‖p =

{∫
I

|fn − fm|p
}1/p

=

{
1

2
2p

}1/p

= 2(p−1)/p = 21−1/p.
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So no subsequence of {fn} is Cauchy in Lp(I), and hence no subsequence of {fn}

converges. So this is an example of a bounded sequence (in Lp(I)) with no conver-

gent subsequence.

Definition. Let X be a normed linear space. A sequence {fn} in X is said to

converge weakly in X to f ∈ X provided limn→∞ T (fn) = T (f) for all T ∈ X∗.

This is denoted {fn} ⇀ f in X.

Note. Notice that the convergence of {fn} to f in X (still denoted “{fn} → f

in X”) is stronger than weak convergence since it implies that for any T ∈ X∗ we

have
|T (fn)− T (f)| = |T (fn − f)| since T is linear

≤ ‖T‖∗‖fn − f‖ by the definition of ‖T‖∗,

so if {fn} → f in X (i.e., ‖fn − f‖ → 0) then |T (fn) − T (f)| → 0 (i.e., T (fn) =

T (f)). So convergence in X is sometimes called strong convergence.
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Proposition 8.6. Let E be a measurable set, 1 ≤ p < ∞, and q the conjugate of

p (i.e., 1
p + 1

q = 1). Then {fn} ⇀ f in Lp(E) if and only if lim
n→∞

(∫
E

gfn

)
=

∫
E

gf

for all g ∈ Lq(E).

Proof. This follows from the definition of weak convergence and the fact that by

the Riesz Representation Theorem, T ∈ X∗ if and only if T (f) =
∫

E gf for some

g ∈ Lq(E).

Lemma A. The limit of a weakly convergent sequence in Lp(E) is unique, 1 ≤

p < ∞.

Theorem 8.7. Let f be a measurable set and 1 ≤ p < ∞. Suppose {fn} ⇀ f in

Lp(E). Then {fn} is bounded in Lp(E) and ‖f‖p ≤ lim inf ‖fn‖p.

Note. The proof of Theorem 8.7 is long and requires Problem 8.18.

Note. The following is a generalization of Proposition 8.6.

Corollary 8.8. Let E be a measurable set, a ≤ p < ∞, and q the conjugate of

p. Suppose {fn} converges weakly to f in Lp(E) ({fn} ⇀ f in Lp(E)) and {gn}

converges strongly to g in Lq(E) ({gn} → g in L1(E)). Then lim
n→∞

(∫
E

gnfn

)
=∫

E

gf.
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Definition. Let S be a subset of linear space X. the linear span of S is the

collection of all linear combinations of functions in S. That is, the linear span of

S is the collection of all functions of the form f =
∑n

k=1 αkfk where αk ∈ R and

fk ∈ S.

Proposition 8.9. Let E be a measurable set, 1 ≤ p < ∞, and let q be the

conjugate of p. Assume F is a subset of Lq(E) whose linear span is dense in

Lq(E). Let {fn} be a bounded sequence in Lp(E) and let f belong to Lp(E). Then

{fn} ⇀ f in Lp(E) if and only if lim
n→∞

(∫
E

fng

)
=

∫
E

fg for all g ∈ F .

Note. The power of Proposition 8.9 is seen in the following two theorems.

Theorem 8.10. Let E be a nonmeasurable set and 1 ≤ p < ∞, suppose {fn} is a

bounded sequence in Lp(E) and f belongs to Lp(E). Then {fn} ⇀ f in Lp(E) if

and only if for every measurable subset A of E we have lim b →∞
(∫

A

fn

)
=

∫
A

f.

If p > 1 (and so q < ∞) it is sufficient to consider sets A of finite measure.

Theorem 8.11. Let [a, b] be a closed, bounded interval and 1 < p < ∞. Suppose

{fn} is a bounded sequence in Lp[a, b] and f ∈ Lp[a, b]. Then {fn} ⇀ f in Lp[a, b]

if and only if lim
n→∞

(∫ x

a

fn

)
=

∫ x

a

f for all x ∈ [a, b]. (This result is false for

p = 1 since, as shown in Section 8.4 Problem 8.44, step functions are not dense in

L∞[a, b].)
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Note. We now look at how pointwise convergence compares to weak convergence.

Example. Consider p = 1 and q = ∞. For n ∈ N define fn = nχ(0,a/n] on [0, 1], and

let f ≡ 0. Then {fn} converges pointwise to f (notice that it is not L1 convergent,

though). Let g = χ[0,1] ∈ L∞[0, 1]. Then

(∫
[0,1]

fng

)
= lim

n→∞

(∫
[0,1]

fn

)
= 1, but∫

[0,1]
fg =

∫
[0,1]

f = 0. So by Proposition 8.6, {fn} does not converge weakly to f .

So this is an example of a pointwise convergent bounded sequence in L1[0, 1] that

is not weakly convergent in L1[0, 1]. The following result shows that this situation

does not occur for 1 < p < ∞.

Theorem 8.12. Let E be a measurable set and 1 < p < ∞. Suppose {fn}

is a bounded sequence in Lp(E) that converges pointwise a.e. on E to f . Then

{fn} ⇀ f in Lp(E).

Note. The following result tells us (for 1 < p < ∞) when weak convergence in

Lp(E) implies strong convergence in Lp(E). Notice that it is similar to Theorem

7.7, but the hypothesis of pointwise convergence in Theorem 7.7 is replaced with a

hypothesis of weak sequential convergence.

The Radon-Riesz Theorem.

Let E be a measurable set and 1 < p < ∞. Suppose {fn} ⇀ f in Lp(E). Then

{fn} → f in Lp(E) if and only if lim
n→∞

‖fn‖p = ‖f‖p.
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Note. The text gives a proof of the Radon-Riesz Theorem for p = 2 (in which case

q = 2 as well), which is surprisingly easy. The case for general p is not presented,

but the text references the book Functional Analysis by Frigyes Riesz and Béla Sz.-

Nagy (Dover Publishing, 1990; pages 78–80). Detailed notes based on this source

are in Supplement. The Radón-Riesz Theorem.

Corollary 8.13. Let E be a measurable set and 1 < p < ∞. Suppose {fn} ⇀ f

in Lp(E). Then a subsequence of {fn} converges strongly in Lp(E) to f if and only

if ‖f‖p = lim inf ‖fn‖p.

Note. The Radon-Riesz Theorem does not hold for p = 1. Let n ∈ N and define

fn(x) = 1 + sin(nx) on I = [−π, π]. then {fn} ⇀ f in L1[π, π] where f ≡ 1 by

Theorem 8.11 since

lim
n→∞

(∫ x

−π

fn

)
= lim

n→∞

∫ x

−π

(1 + sin(nt)) = lim
n→∞

(
t− 1

n
cos(nt)

)∣∣∣∣π
−π

= lim
n→∞

(
(x− 1

n
cos(nx))− (π − 1

n
cos(nπ))

)
= x + π =

∫ π

−π

1.

Also, as above,

lim
n→∞

‖fn‖1 = lim
n→∞

∫ π

−π

|1 + sin(nt)| dt = 2π = ‖f‖1.

However, {fn} = {1 + sin(nx)} does not converge to f ≡ 1 in L1[−π, π] since

lim
n→∞

‖fn − f‖1 = lim
n→∞

(∫ π

−π

| sin(nx)| dx

)
= lim

n→∞

(
2n

∫ π/n

0
sin(nx) dx

)

= lim
n→∞

2n

(
−1

n
cos(nx)

)∣∣∣∣π/n

0
= lim

n→∞
(−2 cos π + 2 cos 0) = 4 6= 0.

So {fn} ⇀ f in L1(I), lim
n→∞

‖fn‖1 = ‖f‖1, but {fn} does not converge strongly to

f in L1(I).
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