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Section 8.3. Weak Sequential Compactness

Note. In this section, we define a new sort of compactness which applies in normed

linear spaces. First, we resolve the Bolzano-Weierstrass Theorem in the Lp setting

with the following result. This result will be used to illustrate the new compactness.

Theorem 8.14. Let E be a measurable set and 1 < p < ∞. Then every founded

sequence in Lp(E) has a subsequence that converges weakly in Lp(E) to a function

in Lp(E).

Note. Our proof of Theorem 8.14 depends on the following.

Helly’s Theorem. Let X be a separable normed linear space and {Tn} a sequence

in its dual space X∗ that is bounded. That is, there exists M ≥ 0 for which

|Tn(f)| ≤ M‖f‖ for all f ∈ X , for all n ∈ N. Then there is a subsequence {Tnk
} of

{Tn} and T ∈ X∗ for which lim
k→∞

Tnk
(f) = T (f) for all f ∈ X .

Note. Recall from Theorem 7.11 that Lp(E) is separable for 1 ≤ p < ∞, so Helly’s

Theorem applies in these cases. Problem 8.36 shows that Helly’s Theorem does not

hold for p = ∞. We are now ready for the proof of Theorem 8.14.
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Example. Theorem 8.14 does not hold for p = 1. For example, consider L1[0, 1].

Define In = [0, 1/n] and fn = nχIn
for n ∈ N. Then {fn} is bounded since

‖fn‖1 = 1 for all n ∈ N. ASSUME subsequence {fnk
} converges weakly in L1[0, 1]

to f ∈ L1[0, 1]. For each [c, d] ⊂ [0, 1] integration against χ[c,d] is a bounded linear

functional on L1[0, 1] (by Proposition 8.2 since χ[c,d] ∈ L∞[0, 1]). Thus

∫ d

c

f =

∫ 1

0

fχ[c,d]

= lim
k→∞

(
∫ 1

0

fnk
χ[c,d]

)

by weak convergence (Proposition 8.6)

= lim
k→∞

(
∫ d

c

fnk

)

.

Now, for c > 0,

∫ d

c

fnk
= 0 for k sufficiently large, since fnk

= nkχ[0,1/nk]. So for all

0 < c < d ≤ 1,

∫ d

c

f = lim
k→∞

(
∫ d

c

fnk

)

= 0. Then, by Lemma 6.13, f = 0 a.e. on

[0, 1]. Therefore,

0 =

∫ 1

0

f = lim
k→∞

(
∫ 1

0

fnk

)

= 1

where the center equality holds by weak convergence (Proposition 8.6) and g ≡ 1 ∈

L∞[0, 1], a CONTRADICTION. This contradiction shows that the supposition of

a weakly convergent subsequence is false.

Note. Although a bounded sequence in L1(E) may not have a weakly convergent

subsequence (as shown in the previous example), a bounded sequence in L1(E)

where m(E) < ∞, which is also uniformly convergent has a weakly convergent

subsequence. The proof of this is given in a more general setting in Chapter 19

(see page 412, Theorem 19.12, the Dunford-Pettis Theorem).
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Definition. A subset K of a normed linear space X is weakly sequentially compact

in X if every sequence {fn} in K has subsequence that converges weakly to f ∈ K.

Note. Recall that a set of real numbers A is compact if and only if every sequence

{an} ⊂ A has a subsequence which converges to an element of A. This is true in

more general settings as well. For example, it holds in metric spaces (see Theorem

9.16 on page 199). Since strong convergence (that is, convergence in Lp(E)) implies

weak convergence, we see that the previous definition is a generalization of the idea

of “regular” compactness for a set and its relationship to the behavior of sequences

from the set.

Theorem 8.15. Let E be a measurable set and 1 < p < ∞. Then {f ∈ Lp(E) |

‖f‖p ≤ 1} is weakly sequentially compact in Lp(E).

Note. The set {f ∈ Lp(E) | ‖f‖p ≤ 1} is actually the closed unit ball in Lp(E).
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