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Essential Background for Real Analysis I

(MATH 5210)

Note. These notes contain several definitions, theorems, and examples from Anal-

ysis I (MATH 4217/5217) which you must know for this class. Throughout, we

give references to two texts used in the past in Analysis I, James R. Kirwood’s An

Introduction to Analysis, 2nd Edition (Waveland Press, 2002), Kenneth A. Ross’s

Elementary Analysis: The Theory of Calculus (Springer, Undergraduate Texts in

Mathematics, 1980), and Halsey Royden and Patrick Fitzpatrick’s Real Analysis,

4th Edition (Prentice Hall, 2010—in these notes, we refer to this book simply as

“Royden”).

Note. It is assumed that you recall standard proof techniques from Mathematical

Reasoning (MATH 3000) and their applications to set theoretic arguments. In

particular, the following.

Theorem 0.1. De Morgan’s Laws. (Kirkwood, Exercise 1.1.8; Ross, Exercise

2.13.5(a); Royden, page 4)

Let {Ai | i ∈ I} be any collection of sets. Then

(∩i∈IAi)
c = ∪i∈IA

c
i and (∪i∈IAi)

c = ∩i∈IA
c
i .
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Definition of the Real Numbers, R

Definition 0.1. (Kirkwood, page 14; Ross, page 13; Royden, pages 7 and 8)

A field F is a nonempty set together with two operations + and ·, called addition

and multiplication, which satisfy the following axioms:

Axiom 1. If a, b ∈ F then a + b and a · b are uniquely determined elements of F

(i.e., + and · are binary operations).

Axiom 2. If a, b, c ∈ F then (a + b) + c = a + (b + c) and (a · b) · c = a · (b · c) (i.e.,

+ and · are associative).

Axiom 3. If a, b ∈ F then a + b = b + a and a · b = b · a (i.e., + and · are

commutative).

Axiom 4. If a, b, c ∈ F then a · (b + c) = a · b + a · c (i.e., · distributes over +).

Axiom 5. There exists 0, 1 ∈ F such that 0 + a = a and 1 · a = a for all a ∈ F.

Axiom 6. If a ∈ F then there exists −a ∈ F such that a + (−a) = 0.

Axiom 7. If a ∈ F a 6= 0, then there exists a−1 such that a · a−1 = 1.

0 is the additive identity, 1 is the multiplicative identity, −a and a−1 are inverses

of a.

Example. Some examples of fields are Zp for p prime, the rational numbers Q,

the extension of the algebraic numbers Q(
√

2,
√

3), the algebraic numbers A, the

real numbers R, and the complex numbers C.
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Definition 0.2. (Kirkwood, page 16; Ross, page 13; Royden, pages 8 and 9)

Let F be a field. Then F is an ordered field if it satisfies the axiom:

Axiom 8. There is P ⊂ F (called the positive subset) such that

(i) If a, b ∈ P then a + b ∈ P (closure of P under addition).

(ii) If a, b ∈ P then a · b ∈ P (closure of P under multiplication).

(iii) If a ∈ F then exactly one of the following holds: a ∈ P , −a ∈ P , or a = 0

(this is The Law of Trichotomy).

Definition 0.3. (Kirkwood, page 17; Ross, page 13; Royden, pages 8 and 9)

Let F be a field and P the positive subset. We say that a < b (or b > a) if b−a ∈ P .

Note. The field Zp (p prime) is not ordered. Fields Q, Q(
√

2,
√

3), and R are

ordered by the traditional “<.” Field C is not ordered (see my notes for Complex

Analysis I [MATH 5510] on Ordering the Complex Numbers).

Definition 0.4. (Kirkwood, page 17; Ross, page 20)

An interval in an ordered field is a set A containing at least two elements such that

is r, s ∈ A with r < s and if t is an element of the field such that r < t < s then

t ∈ A.

Note. There are several types of intervals depending on whether they have and/or

include “endpoints.”

http://faculty.etsu.edu/gardnerr/5510/Ordering-C.pdf
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Note. In order to axiomatically define the real numbers, we need to address the

concept of “completeness.” It is this concept which will insure that the real numbers

form a continuum and that it has “no holes.”

Definition 0.5. (Kirkwood, page 25; Ross, Definition 1.4.2; Royden, page 9)

Let A be a subset of an ordered field F. If there exists b ∈ F such that a ≤ b for

all a ∈ A, then b is an upper bound of A and A is said to be bounded above. If

there exists c ∈ F such that c ≤ a for all a ∈ A, then c is a lower bound of A and

A is bounded below. A set bounded above and below is bounded. A set that is not

bounded is unbounded.

Definition 0.6. (Kirkwood, page 25; Ross, Definition 1.4.3; Royden, page 9)

Let A be a subset of an ordered field F which is bounded above. Then b ∈ F is

called a least upper bound (lub or supremum) of a set A if (1) b is an upper bound

of A and (2) if c is an upper bound of A, then b ≤ c.

Definition 0.7. (Kirkwood, page 25; Ross, Definition 1.4.3; Royden, page 9)

Let A be a subset of an ordered field F which is bounded below. Then b ∈ F is

called a greatest lower bound (glb or infimum) of a set A if (1) b is an lower bound

of A and (2) if c is an lower bound of A, then c ≤ b.

Definition 0.8. (Kirkwood, page 25; Ross, page 22; Royden, page 9)

Let F be an ordered field. F is complete if for any nonempty set A ⊂ F that is

bounded above, there is a lub of A in F.
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Example. The rationals Q = {p/q | p, q ∈ Z, q 6= 0} are not complete because set

A = {x ∈ Q | x2 < 2} has an upper bound (say 2) but has no least upper bound

in Q.

Definition 0.9. (Kirkwood, page 25; Ross, Axiom 4.4; Royden, page 9)

Axiom 9. The real numbers are complete.

That is, the real numbers are a complete, ordered field.

Note. The 9 axioms of the real numbers consist of 7 Field Axioms, the Order

Axiom, and the Completeness Axiom. So the real numbers are a complete ordered

field. In fact, we can say that the real numbers are the complete ordered fields,

since it can be shown that all complete ordered fields are isomorphic. Details on

the can be found in Which Numbers are Real? by Micael Henle, Washington, DC:

Mathematical Association of America, Inc. (2012) (see Theorem 2.3.3 of page 48).

Note. The Axiom of Completeness can be used to define exponentiation of positive

real numbers to irrational powers. It is also possible to define this exponentiation in

terms of the exponential function, ex; this is the approach taken in Calculus II and

by Ross (Definition 37.7). However, the exponential function is defined in Calculus

and in Ross using the theory of integration where the natural logarithm function

is defined in terms of integrals and the exponential function is then defined as the

inverse of the natural logarithm function.
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Theorem 0.2. (Kirkwood, page 26)

Let x > 1 be a positive real number and r a positive irrational number. Then xr

is the lub of the set {xp | p ∈ Q, 0 < p < r}. If x ∈ (0, 1), then xr is
1

(1/x)r
. If r is

a negative irrational number, then xr = (1/x)|r|.

Note. We will define the measure of a set and certain Lebesgue integrals in terms

of suprema and infima so the following property is important.

Theorem 0.3. Epsilon Property of Sup and Inf. (Kirkwood’s Theorem 1-15;

Royden, Proposition 1.19(i))

(a) Finite α is a lub of A ⊂ R if and only if

(i) α is an upper bound of A, and

(ii) For all ε > 0 there exists a number x(ε) ∈ A such that x(ε) > α− ε.

(b) Finite β is a glb of A ⊂ R if and only if

(i) β is a lower bound of A, and

(ii) For all ε > 0 there exists a number x(ε) ∈ A such that x(ε) < β + ε.

Sequences of the Real Numbers

Note. You should be familiar with the definition of a sequence of real numbers

and the epsilon-delta definition of the limit of a sequence from Calculus II (MATH

1920).
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Definition 0.10. (Kirkwood, page 46; Ross, Definition 2.10.8, Royden, page 22)

A sequence of real numbers {an} is a Cauchy sequence if

for all ε > 0, there exists N(ε) such that

if n, m > N(ε) then |an − am| < ε.

Note. The fact that a convergent sequence is Cauchy is a simple consequence of

the Triangle Inequality for real numbers (|a + b| ≤ |a| + |b| for all a, b ∈ R). The

fact that a Cauchy sequence of real numbers is convergent is a consequence of the

Axiom of Completeness. We then have: A sequence of real numbers is convergent

if and only if it is Cauchy (see Kirkwood, Exercise 2.3.13; Ross, Theorem 2.10.11;

Royden and Fitzpatrick, Theorem 1.17).

Definition 0.11. (Kirkwood, page 48; Ross, Definition 2.11.1)

Let n1 < n2 < · · · < nk < · · · be strictly increasing sequence of positive integers.

Then an1
, an2

, . . . , ank
, . . . is a subsequence of {an} and is denoted {ank

}.

Definition 0.12. (Kirkwood, page 49; Ross, Definition 2.11.6)

L is a subsequential limit of {an} if there is a subsequence of {an} that converges

to L.

Definition 0.13. (Kirkwood, page 55; Ross, Theorem 2.11.7)

Let {an} be a sequence of real numbers. Then lim sup an = lim an is the least

upper bound of the set of subsequential limits of {an}, and lim inf an = lim an is

the greatest lower bound of the set of subsequential limits of {an}.
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Note. Ross and Royden and Fitzpatrick have a different (but equivalent) definition

of lim sup and lim inf for {an} (Ross, Definition 2.10.6; Royden, page 23):

lim sup{an} = lim
n→∞

[sup{ak | k ≥ n}].

lim inf{an} = lim
n→∞

[inf{ak | k ≥ n}].

Note. For a given sequence {an}, we have that property that lim sup an and

lim inf an are both subsequential limits (Kirkwood, Exercise 2.3.16). So we can say

that lim sup an is the greatest subsequential limit of sequence {an} and lim inf an is

the least subsequential limit of sequence {an} (with the obvious interpretation for

−∞ and ∞).

Theorem 0.4. (Kirkwood, Theorem 2-18; Ross, Exercises 2.12.4 and 2.12.5)

Let {an} and {bn} be bounded sequences of real numbers.

(a) lim(an + bn) ≤ lim an + lim bn, and

(b) lim an + lim bn ≤ lim(an + bn).

Open and Closed Sets, Compact Sets, Connected Sets

Definition 0.14. (Kirkwood, pages 60 and 61; Ross, Definition 2.13.6)

A set U of real numbers is said to be open if for all x ∈ U there exists δ(x) > 0

such that (x− δ(x), x + δ(x)) ⊂ U . A set A is closed if Ac is open.
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Theorem 0.5. (Kirkwood, Theorem 3-2; Ross, Exercise 2.13.3)

The open sets satisfy:

(a) If {U1, U2, . . . , Un} is a finite collection of open sets, then ∩n
k=1Uk is an open

set.

(b) If {Uα} is any collection (finite, infinite, countable, or uncountable) of open

sets, then ∪αUα is an open set.

Theorem 0.6. (Kirkwood, Theorem 3-3; Ross, Exercise 2.13.5(b))

The closed sets satisfy:

(a) ∅ and R are closed.

(b) If {Aα} is any collection of closed sets, then ∩αAα is closed.

(c) If {A1, A2, . . . , An} is a finite collection of closed sets, then ∪n
k=1Ai is closed

Note. We see from the previous two results that (1) a countable infinite intersection

of open sets may not be open, and (2) a countable infinite union of closed sets may

not be closed. In this class, we will give such sets names (Gδ and Fσ, respectively).

Note. The following is the most important result from Analysis I for Real

Analysis I! It tells us what an open set of real numbers “looks like.”

Theorem 0.7. Classification of Open Sets of Real Numbers. (Kirkwood,

Theorem 3-5; Ross, Exercise 3.13.7)

A set of real numbers is open if and only if it is a countable union of disjoint open

intervals.
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Note. A largely self-contained proof of Theorem 0.7 is in my online notes for

Analysis 1 on A Classification of Open Sets of Real Numbers.

Definition 0.15. (Kirkwood, pages 65 and 66; Ross, Definition 2.13.11)

Let A ⊂ R. The collection of sets {Iα} is said to be a cover of A if A ⊂ ∪αIα. If

each Iα is open, then the collection is called an open cover of A. If the cardinality of

{Iα} is finite, then the collection is a finite cover. A set of real numbers is compact

if every open cover of the set has a finite subcover.

Theorem 0.8. Heine-Borel Theorem. (Kirkwood, Theorems 3-10 and 3-11;

Ross, Theorem 2.13.12)

A set of real numbers is compact if and only if it is closed and bounded.

Definition 0.16. (Kirkwood, page 69; Ross, Definition 3.22.1)

A separation of set A is two open sets U and V such that:

(i) U ∩ V = ∅.

(ii) U ∩ A 6= ∅ and V ∩ A 6= ∅.

(iii) (U ∩ A) ∪· (V ∩ A) = A.

A set A is connected if there does not exist a separation of A.

http://faculty.etsu.edu/gardnerr/4217/notes/Supplement-Open-Sets.pdf
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Theorem 0.9. (Kirkwood, Theorem 3-14)

A set of real numbers is connected if and only if it is an interval or a singleton.

Cardinalities: Cantor’s Theorem and Alephs

Note. Cardinalities of sets play a large role in analysis. We now touch lightly on

a few important concepts.

Definition 0.17. (Kirkwood, page 30; Royden, page 5)

Two sets A and B are said to have the same cardinality if there is a one-to-one and

onto function from A to B.

Definition 0.18. (Kirkwood, page 20; Royden, page 13)

A set S is said to be finite with cardinality n if there is a one-to-one and onto func-

tion from S to {1, 2, . . . , n} where n ∈ N. The empty set is finite with cardinality

0. Sets that do not have finite cardinality are infinite sets. A set S is countable if

it has the same cardinality as some subset of N. Sets that are not countable are

said to be uncountable.

Theorem 0.10. (Kirkwood, Theorem 1-19; Royden, Corollary 1.6)

The union of a countable collection of countable sets is countable.
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Theorem 0.11. (Kirkwood, Theorem 1-20; Royden, Theorem 1.7)

The real numbers in (0, 1) form an uncountable set.

Note. The technique of proof in Theorem 0.11 is called the “Cantor diagonalization

argument.” Since tan(πx − π/2) is a one to one and onto mapping from (0, 1) to

R, it follows by Definition 0.17 that the cardinality of (0, 1) is the same as the

cardinality of R (in fact, every interval has the same cardinality as R).

Definition 0.19. (Kirkwood, page 33)

A cardinal number is associated with a set. Two sets share the same cardinal

number if they are of the same cardinality. The cardinal number of set X is

denoted |X|. We order the cardinal numbers with the following:

(i) If X and Y are sets and there is a one to one function from X into Y , then

the cardinal number of X is no larger than the cardinal number of Y , denoted

|X| ≤ |Y | or |Y | ≥ |X|.

(ii) If (i) holds, and if there is no onto function from X to Y , then the cardinal

number of Y is strictly larger than the cardinal number of X, denoted |X| <

|Y | or |Y | > |X|.

(We interpret the idea of the cardinal number of Y being larger than the cardinal

number of X as meaning that Y has “more elements” than X.)
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Theorem 0.12. Cantor’s Theorem. (Kirkwood, Theorem 1-21)

The cardinal number of the power set of X, P(X), is strictly larger than the

cardinal number of X, |X| < |P(X)|.

Note. For a finite set A with |A| = n, it is easy to show that |P(A)| = 2n (by

induction, say). Based on this fact, it is a common notation to denote |P(A)| = 2|A|.

It can be shown that |N| is the smallest infinite cardinal number. This cardinality

is denoted “aleph naught”: ℵ0 = |N|. So the cardinality of any countable set is ℵ0.

By Cantor’s Theorem, we have ℵ0 = |N| < |P(N)| = 2ℵ0.

Note. The real numbers, R, are often called “the continuum” and the cardinality of

the continuum is denoted |R| = c. It can be shown that c = |R| = |P(N)| = 2ℵ0 (see

Section 6.2 of Hrbacek and Jech, Introduction to Set Theory, 2nd Edition Revised

and Expanded, in Pure and Applied Mathematics, A Series of Monographs and

Textbooks, Marcel Dekker (1984)). Since ℵ0 < c it is natural to ask if there is a

cardinal number β such that ℵ0 < β < c. This is equivalent to the existence of a

set B where N ⊂ B ⊂ R where |N| < |B| < |R|. Unfortunately, under the standard

axioms of set theory, the ZFC axioms, the claim of the existence of such a set is

“undecidable” (a concept introduced by Kurt Gödel [1906–1978]).

Note. In 1900, David Hilbert (1862–1943) gave a list of 23 unsolved problems at

the International Congress of Mathematics in Paris and the first problem on the

list was the “continuum problem.” The Continuum Hypothesis states that there is
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no such set B and no such cardinal number β. In 1939, Kurt Gödel proved that

the Continuum Hypothesis is consistent with the ZFC axioms of set theory (in The

Consistency of the Continuum-Hypothesis, Princeton University Press (1940)). In

1963, Paul Cohen (1934–2007) proved that the Continuum Hypothesis is indepen-

dent of the ZFC axioms (in “The Independence of the Continuum Hypothesis,”

Proceedings of the National Academy of Sciences of the United States of America

50(6): 1144–1148 and “The Independence of the Continuum Hypothesis II,” ibid,

51(1), 105–110). Cohen was awarded the Fields Medal in 1966 for his proof. This

is why the Continuum Hypothesis is said to be undecidable within ZFC set the-

ory. Under the assumption of the Continuum Hypothesis, we denote ℵ1 = 2ℵ0 = c

(strictly speaking, ℵ1 has a definition based on the study of ordinal numbers, but

we omit these details).

Note. So under the assumption of the Continuum Hypothesis, we have the nota-

tion: ℵ0 = |N|, ℵ1 = |R|, and ℵ2 = |P(R)|. Real Analysis I is (crudely put) the

study of P(R) and its subsets. As a consequence, these are the cardinal numbers

of interest for this class.

Riemannian Integration

Note. You also need a knowledge of the development of Riemann integration. This

is contained in Chapter 6 of Kirkwood and Chapter 6 of Ross. The material is also

introduced in Royden’s Section 4.1. We will cover these ideas in a supplement to

this class on The Riemann-Lebesgue Theorem. The supplement gives the defini-

tion of a Riemann integral, results concerning uniform convergence of sequences of

http://faculty.etsu.edu/gardnerr/5210/Riemann-Lebesgue-Theorem.pdf
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functions and Riemann integrability, and necessary and sufficient conditions for a

bounded function to be Riemann integrable on a closed and bounded interval (the

“Riemann-Lebesgue Theorem”). In addition, the concept of a set of real numbers

having “measure zero” is defined.
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