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Supplement. The Dirac Delta Function,
A Cautionary Tale

Note. In the study of charge distributions in electricity and magnetism, when con-
sidering point charges it is common to introduce the “Dirac delta function,” §(x).

This function is defined to be extended real valued with the following properties:

0 ifx#0 o0
d(z) = and / d(z)dr = 1.
oo ifxr=0 —00
However, this is very misleading! First, Riemann integrals do not address extended

real valued functions. Second, such a function would violate Proposition 4.9 of

Royden and Fitzpatrick’s Real Analysis, 4th Edition:

Proposition 4.9. Let f be a nonnegative measurable (extended real

valued) function on set E. Then the Lebesgue integral [, f = 0 if

and only if f =0 a.e. on E.
Note. In this supplement, we refer to the junior-level undergraduate text Foun-
dations of Electromagnetic Theory, 3rd Edition by John Reitz, Frederick Milford,
Robert Christy, Addison-Wesley (1979). We reveal some errors in it’s presentation

of §(z) and explore an alternative approach to “get the math right.”
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Note. Reitz, Milford, and Christy introduce the Dirac delta function on pages 43
and 44.

The Dirac Delta Function 43

The dipole moment with respect to the old system is
p=[ rp()dr=[ (" +R)pr)dv' = r'pd’ +RQ,  (2-50)
g = o 2

which proves the statement above.
The third term of Eq. (2-48) can be written

SEvihle s
Zls oy (2-51)
=
where
0= (xix)=5,r2)p(r) dv. (2-52)
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There are nine components of Q;; corresponding to i, j equal to 1, 2, 3. Of these
nine components six are equal in pairs, leaving six distinct components. This set of
quantities forms the quadrupole moment tensor* and represents an extension of the
dipole moment concept. There are, of course, higher-order moments which are
generated by keeping higher-order terms in the expansion of Eq. (2-48). These
higher-order multipoles are important in nuclear physics, but will not be con-
sidered further in this book.

The electric multipoles are used, as Eq. (2-48) indicates, to approximate the
electric field of a charge distribution. There are, however, many other uses, all in
the framework of approximating a real extended charge distribution by point
charges, point dipoles, etc. These approximations often make it possible to solve
extremely difficult problems.

2-10 THE DIRAC DELTA FUNCTION

In the general expressions for electric field and potential in Eqs. (2-8) and (2-15),
we have distinguished between point charges and continuous charge distributions.
For economy of notation, if for no other reason, it would be useful to be able to
express point charges as a special case of a general charge-density function p(r).
The Dirac delta function (r) can serve this purpose, and in addition it is a valuable
mathematical tool in many calculations. We write

p(r)=qd(r),  (point charge) (2-53)
where
3r)=0 forr#0,
[ty av =1. (2-54)

* Tensors are a generalization of vectors and an elementary discussion is given in
Appendix 1.

44 Electrostatics

Clearly this gives a mathematical expression to the physical idea of a point charge
at r = 0: the integrated charge density is g, but all of the charge is located exactly
at the origin. The delta function is obviously a very highly singular mathematical
function if it can be zero everywhere except at a single point and yet have a
nonzero integral.* Nevertheless it is a legitimate mathematical object, which leads
to no difficulties if one is cautious, not trying to differentiate it like a continuous
function, for example. A variation of it can be made to represent a surface charge
density o(r), that is, a charge distribution that vanishes everywhere except on a
certain surface. With these extensions, the single integral over p(r) is enough in
Egs. (2-8) and (2 15). For this application we note that

[ F)(er) v = F0), (2-55)

where F is any scalar or vector function, since the integrand vanishes except at
r' = 0. Furthermore,

J F(r')o(r — ro) dv’ = F(r,). (2-56)

Thus, if p(r') = ¢;6(r' —r;),

for a point charge g; at r;.
Some other properties of the delta function can be obtained as consequences
of Gauss’s law in differential form,
V-E=—p. (2-28)

For a point charge g at r = 0, with (2-21)

g ey

dae, 1P & ()
or

V5= 4nse) (2-57)
Also, since

i el r

X ;—;5(7)— e
v (1) = —4n3fe) @58)

* The Riemann integral of such a function is zero if it exists at all, but the integration can be
handled by the more general Lebesgue integral. See Appendix IV for other properties of the
delta function.

Note. The motivation for d(x) is given on page 43. On page 44, they comment
that “...it is a legitimate mathematical object, which leads to no difficulties if
one is cautious....” In the footnote, they falsely state: “The Riemann integral of
such a function is zero if it exists at all, but the integration can be handled by the
more general Lebesgue integral.” Well, the Lebesgue integral does “handle” the

integration, but it gives zero as the integral value.
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Definition. Reitz, Milford, and Christy give more details in their Appendix IV,
and the notation there is consistent with that used above in these notes (as opposed

to a function of a vector variable as stated on their pages 43 and 44).
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the theorem gives the Fourier transform
AppENDIX IV Dirac Delta Function o=k [ e i

For f(x) = 6(x), we find g(k) = 1/2n (see below), so that
1+
3x) =5~

= e k. =
= (IV-5)

Thus the Fourier transform of the delta function is a constant function, and
conversely. Taking the real part of (IV-5) gives

e
5(x)= %{ .1 cos kx dk. (IV-6)

Tn one dimension, the delta function is defined by
8(x)=0for x £ 0,

[ St av-1)

This can be understood in an elementary way as the limit of an ordinary contin-
uous function. For example, the Gaussian function

1 —x2fe2
o
e
has a peak at x = 0, which is higher and narrower the smaller is ¢ and its integral
from —oo to + oo is 1 for any value of ¢. Thus we could define

4(x) = lim - G, (Iv-2)

0 /€
Another useful representation is

€ sin? x/c
il

8(x) = lim (1v-3)

As a third example, we may use the Lorentzian function introduced in Chapter 19:

€ 1
fme
3x) E‘f‘;nxz+éz

(IV-4)

An important application of the delta function involves the Fourier theorem.
If a function f(x) is expressed by a Fourier integral,

o

5= gwe d.
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Equations (IV-5) and (IV-6) may be considered as other representations of the
delta function.
The mean-value theorem of calculus gives

j;a F(x)f(x) dx=F(0) jf“ A
so that as f(x) - d(x)
J" F(x) 5(x) dx = F(0). (IV-7)

In all of the above equations one can replace the variable x by (x — Xo); in
particular,

J' F(x) 8(x — xo) dx = F(xo). (IV-8)

In any equation involving the delta function, the domain of integration can be
reduced to any interval containing the point where the argument of the delta
function vanishes.

An extension to three dimensions can be achieved by writing

8(r) dv = 0(x) 8(y) d(z) dx dy dz. (IV-9)
In Chapter 2 we found that

8(r) = v ("1). (IV-10)

normal distribution, [~

can create a sequence of functions f,,

e.¢]

Note. In equations 1V-2, IV-3, and 1V-4 they write d(x) as the limit of three

1

different functions. In equation IV-2, they state d(z) = lim._, ?e_xz/ ¢ (a normal
distribution with mean y = 0 and standard deviation o = £/4/2). Since this is a
- ﬁe‘xz/gz dr = 1. As € — 0, the distribution gets very
narrow with a large spike at x = 0. If we replace ¢ with 1/n where n € N, then we

~(2)* where lim,, .. fu(z) = 6(x).
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Note. Recall that from Royden and Fitzpatrick:

Monotone Convergence Theorem. Let {f,} be an increasing
sequence of nonnegative measurable functions on set E. If {f,} — f

pointwise a.e. on E, then

i ([ 0) = [ () = [ 5

In the previous note, we have f, = %e*(”x)z and lim,, .o fu(x) = d(x), but the
convergence is not monotone increasing, so the Monotone Convergence Theorem
does not apply to give that the integral f x)dx is 1. It is clear that Reitz,
Milford, and Christy are trying to use the values of the integrals of the normal
distributions to justify the claim that the integral of d(x) should be 1, but this is

not the case.

Note. Recall that from Royden and Fitzpatrick:

Fatou’s Lemma. Let {f,} be a sequence of nonnegative measurable

functions on set E. If {f,} — f pointwise a.e. on F, then

/Efgliminf</Efn>.

Now we can apply Fatou’s Lemma to the sequence of normal distributions above,
since the convergence to d(x) is pointwise and all functions here are nonnegative.

But this simply allows us to conclude that

/_OO d(z)dr < /_OO %6_(7“)2 dr =1,

still not an equality of 1, but merely an upper bound of 1.
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Note. Reitz, Milford, and Christy’s “no difficulties if one is cautious” comment is
correct, with the right kind of caution! In Analysis 2 (MATH 4227/5227) Riemann-
Stieltjes integrals are introduced (see my online class notes on 6-3. The Riemann-
Stieltjes Integral; in particular, see Theorem 6-26). One way to resolve the desired
properties of the Dirac delta function, is to use Riemann-Stieltjes integrals. You

should review these notes before reading the next note.

Note. Let

0 forz e (—o00,0)
g(x) =
1 for z € [0,00).

Then the derivative of g is 0 if n # 0. The definition of limit gives that the

derivative of ¢ is oo at 0. Also, we have the Riemann-Stieltjes integral

/_ng: /_Ooodgﬂl) [ﬁmg(w) —limg(x)] -I-/Ooodg: 04 (1)[1] +0=1.

xz]0 zT0

So the derivative of g(x) has the values of §(z) given above and the Riemann-
Stieltjes integral of f(x) = 1 with respect to g satisfies the integral property of 6(x)
given above. If f is a function defined on all of R, then we can use the Riemann-

Stieltjes integral to determine the value of f at a specific point (say © = x):

/_OO f(z)dg(x — x¢) = f(xo) [lim g(z — x) — lim g(z — xo) | = f(x0)[1] = f(0).

x| 2o xTxg

Note. Another, more sophisticated solution involves the Dirac measure concen-
trated at ¢, denoted 0,,. For a o-algebra M of subsets of a set X and a point
xo belonging to X, the measure of 1 is assigned to a set in M that contains x,
and a measure of 0 is assigned to a set that does not contain xy. We then have for
measurable function f on X that [, fdd,, = f(xo), as desired. This is explored
in Problem 18.26 (in 18.2. Integration of Nonnegative Measurable Functions) and

Problem 18.27(ii) (in 18.3. Integration of General Measurable Functions).


http://faculty.etsu.edu/gardnerr/4217/notes/6-3.pdf
http://faculty.etsu.edu/gardnerr/4217/notes/6-3.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/18-2.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/18-3.pdf
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Note. The Dirac delta function is named for Paul A. M. Dirac (August 8, 1902
October 20, 1984). Another approach is to treat d(x) not as a function, but as a
distribution (or a generalized function). It is therefore more accurately called the
“Dirac delta distribution.” A classical work on the theory of distributions is I. M.
Gel'fand and G. E. Shilov’s Generalized Functions, Volumes 15, Academic Press,

(1966-1968).
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