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Supplement. The Radón-Riesz Theorem

Note. In Royden and Fitzpatrick’s Real Analysis, 4th Edition (Boston: Pearson Education, 2010)

a proof of the Radón-Riesz Theorem is only given for p = 2 (in which case q = 2 as well). Here, a

proof is given for general p, 1 < p < ∞. The argument given here is based on Frigyes Riesz and

Béla Szőkefnalvy-Nagy’s Functional Analysis (Mineola, NY: Dover Publishing, 1990; pages 78–80).

This is an unabridged republication of the 1955 version of the book.

Note. The Radón-Reisz Theorem states that weak convergence in Lp(E) implies strong convergence

in Lp(E) for 1 < p < ∞ when lim
n→∞

‖fn‖p = ‖f‖p. Recall that “{fn} converges weakly to f” in Lp(E)

is denoted {fn} ⇀ f .

The Radón-Riesz Theorem.

Let E be a measurable set and 1 < p < ∞. Suppose {fn} ⇀ f in Lp(E). Then {fn} → f in Lp(E)

if and only if lim
n→∞

‖fn‖p = ‖f‖p.

Lemma R-R-1. For p ≥ 2 and for every x ∈ R, |1 + x|p ≥ 1 + px + x|x|p for some positive c < 1

(independent of x, but possibly dependent on p).

Proof. Consider f(x) = |a + x|p − 1 − px. Then

f ′(x) =







p|1 + x|p−1 − p for x > −1

−p|1 + x|p−1 − p for x < −1.

So f ′(x) > 0 for x > 0 and f ′(0) = 0. Since f(0) = 0, then f(x) > 0 for x > 0. Also, f ′(x) < 0 for

−1 < x < 0 and f ′(x) < 0 for x < −1. Since f(−1) = p − 1 ≥ 1, then the graph of f is similar to

(one can show that f ′′(x) > 0 for x 6= 1):
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So f(x) > 0 for all x 6= 0. Next, we consider gp(x) =
|1 + x|p − 1 − px

|x|p
. For p = 2, g2(x) =

(1 + x)2 − 1 − 2x

x2
= 1 if x 6= 0. For p > 2,

lim
x→0+

gp(x) = lim
x→0+

|1 + x|p − 1 − px

|x|p
= lim

x→0+

(1 + x)p − 1 − px

xp

0/0
= lim

x→0+

p(1 + x)p−1 − p

pxp−1

0/0
= lim

x→0+

p(p − 1)(1 + x)p−2

p(p − 1)xp−2
= lim

x→0+

(1 + x)p−2

xp−2
= +∞,

and

lim
x→0−

gp(x) = lim
x→0−

|1 + x|p − 1 − px

|x|p
= lim

x→0−

(1 + x)p − 1 − px

(−x)p

0/0
= lim

x→0−

p(1 + x)p−1 − p

p(−x)p−1(−1)

0/0
= lim

x→0−

p(p − 1)(1 + x)p−2

p(p − 1)(−x)p−2
= lim

x→0−

(1 + x)p−2

(−x)p−2
= +∞.

So lim
x→0

gp(x) = +∞ for p > 2. As |x| → ∞ we have

lim
x→∞

gp(x) = lim
x→∞

|1 + x|p − 1 − px

|x|p
= 1.

So the graph of gp is similar to the following:
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So there is some c, 0 < c ≤ 1, such that gp(x) > c for all x 6= 0. Therefore, gp(x) =
|1 + x|p − 1 − px

|x|p
≥

c for all x 6= 0, and |1 + x|p − 1 − px ≥ c|x|p for all x ∈ R since the result easily holds for x = 0.

Note. The graph of g2(x) shows that we can take c = 1 for p = 2, and that is why the proof for

p = 2 is relatively easy (the case p = 2 is given by Royden and Fitzpatrick).

Lemma R-R-2. For 1 < p < 2 and every x ∈ R, the function

hp(x) =







|1+x|p−1−px
|x|p

for |x| > 1

|1+x|p−1−px
x2 for |x| ≤ 1

satisfies hp(x) ≥ c (for x 6= 0) for some positive c < 1 (independent of x, but possibly dependent

on p).

Proof. As shown in the proof of Lemma R-R-1, the numerator of hp(x) is positive for x 6= 0. Now

lim
h→0

hp(x) = lim
x→0

(1 + x)p − 1 − px

x2

0/0
= lim

x→∞

p(1 + x)p−1 − p

2x

0/0
= lim

x→0

p(p − 1)(1 + x)p−2

2
=

p(p − 1)

2
.

Next, hp is continuous at x = −1 and hp(−1) = p−1, hp is continuous at x = 1 and hp(1) = 2p−1−p.

As established in Lemma R-R-1, lim
|x|→∞

hp(x) = 1. Since hp is continuous on R, then there is a positive

c, c < 1, with c ≤ hp(x) for all x ∈ R.
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Proof of the Radón-Riesz Theorem for General p.

First, suppose {fn} → f in Lp(E). Notice that, by the Triangle Inequality, g = g − h + h implies

that ‖g‖p ≤ ‖g − h‖p + ‖h‖p and so ‖g‖p − ‖h‖p ≤ ‖g − h‖p. Similarly, h = h − g + g implies

‖h‖p ≤ ‖h− g‖p + ‖g‖p and so ‖h‖p −‖g‖p ≤ ‖h− g‖p = ‖g −h‖p. So |‖g‖p −‖h‖p| ≤ ‖h− g‖p for

all h, g ∈ Lp(E). So with {fn} → f in Lp(E), we have for all ε > 0, there exists N ∈ N such that

for all n ≥ N ,

|‖fn‖p − ‖f‖p| ≤ ‖fn − f‖p < ε.

Therefore, lim
n→∞

‖fn‖ = ‖f‖.

Second, suppose {fn} ⇀ f in Lp(E) and lim
n→∞

‖fn‖p = ‖f‖p. We first consider the case p ≥ 2.

By Lemma R-R-1, for all y ∈ R, |1 + y|p ≥ 1 + py + c|y|p for some c, 0 < c < 1. Define

E0 = {x ∈ E | f(x) = 0}. For x ∈ E \ E0, replace y with
fn(x)− f(x)

f(x)
to get

∣

∣

∣

∣

1 +
fn(x)− f(x)

f(x)

∣

∣

∣

∣

p

≥ 1 + p

(

fn(x) − f(x)

f(x)

)

+ c

∣

∣

∣

∣

fn(x) − f(x)

f(x)

∣

∣

∣

∣

p

or
∣

∣

∣

∣

fn(x)

f(x)

∣

∣

∣

∣

p

≥ 1 + p

(

fn(x) − f(x)

f(x)

)

+ c

∣

∣

∣

∣

fn(x) − f(x)

f(x)

∣

∣

∣

∣

p

for x ∈ E \ E0, or

|fn(x)|p ≥ |f(x)|p + p
|f(x)|p

f(x)
(fn − f(x)) + c|fn(x)− f(x)|p

= |f(x)|p + p|f(x)|p−2f(x)(fn(x) − f(x)) + c|fn(x) − f(x)|p

for x ∈ E \ E0. Notice that this also holds when f(x) = 0, since c < 1. Therefore this inequality

holds for all x ∈ E. So by monotonicity of integration,

∫

E

|fn|
p ≥

∫

E

|f |p + p

∫

E

|f |p−2f(fn − f) + c

∫

E

|fn − f |p. (∗)

Now |f |p−2f = sgn(f)|f |p−1 and by Hölder’s Inequality (“Moreover. . . ”), |f |p−2f ∈ Lq(E). Since

{fn} → f in measure, then

∫

E

|f |p−1f(fn − f) → 0. By hypothesis,

∫

E

|fn|
p →

∫

E

|f |p. For for all

ε > 0 there exists N ∈ N such that for all n ≥ N , we have from (∗)

cε >

∫

E

|fn|
p −

∫

E

|f |p + p

∫

E

|f |p−2f(f − fn) ≥ c

∫

E

|fn − f |p.

So ‖fn − f‖p → 0 as n → ∞ and {fn} → f with respect to the Lp norm for p ≥ 2.
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Third, suppose 1 ≤ p < 2. By Lemma R-R-2,







|1 + y|p − 1 − py ≥ c|y|p for |y| > 1

|1 + y|p − 1 − py ≥ cy2 for |y| ≤ 1

for some 0 < c < 1. Define E0 = {x ∈ E | f(x) = 0}. Define En = {x ∈ E | |fn(x)−f(x)| > |f(x)|}.

For x ∈ E \ E0, replace y with
fn(x) − f(x)

f(x)
. We have







∣

∣

∣
1 + fn(x)−f(x))

f(x)

∣

∣

∣
− 1 − p

fn(x)−f(x)
f(x)

≥ c

∣

∣

∣

fn(x)−f(x)
f(x)

∣

∣

∣

p

for x ∈ En \ E0
∣

∣

∣
1 + fn(x)−f(x))

f(x)

∣

∣

∣
− 1 − p

fn(x)−f(x)
f(x)

≥ c
(

fn(x)−f(x)
f(x)

)2

for x ∈ E \ En \ E0

or






|fn(x)|p ≥ |f(x)|p + p|f(x)|p−1f(x)(fn(x) − f(x)) + c|fn(x) − f(x)|p for x ∈ En \ E0

|fn(x)|p ≥ |f(x)|p + p|f(x)|p−1f(x)(fn(x) − f(x)) + c(fn(x) − f(x))2|f(x)|p−2 for x ∈ E \ En \ E0

or






|fn(x)|p − |f(x)|p + p|f(x)|p−2f(x)(f(x) − fn(x)) ≥ c|fn(x) − f(x)|p for x ∈ En \ E0

|fn(x)|p − |f(x)|p + p|f(x)|p−2f(x)(f(x) − fn(x)) ≥ c(fn(x) − f(x))2|f(x)|p−2 for x ∈ E \ En \ E0.

Notice that these also hold when f(x) = 0, since c < 1. Therefore the inequalities hold for all

x ∈ En and x ∈ E \ En, respectively. So by monotonicity of integration

∫

E

|fn|
p −

∫

E

|f |p + p

∫

E

|f |p−1f(f − fn) ≥ c

∫

En

|fn − f |p + c

∫

E\En

|fn − f |2|f |p−2.

As above, the left hand side approaches 0, and so the right hand side approaches 0. So for all ε > 0,

there exists N ∈ N where for all n > N we have

c

∫

En

|fn − f |p <
cε

2
and c

∫

E\En

(fn − f)2|f |p−2 <
cε2

4‖f‖p
p
.

Then for all n > N we have

ε

2
>

{

‖f‖p
p

}1/2
{
∫

E\En

(fn − f)2|f |p−1

}1/2

≥

{
∫

E\En

|f |p
}1/2{∫

E\En

(fn − f)2|f |p−1

}1/2

≥

{
∫

E\En

(|f |p/2)2

}1/2{∫

E\En

(|fn − f ||f |(p−2)/2)2

}1/2
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≥

∫

E\En

|f |p/2 · |fn − f ||f |(p−2)/2 by the Cauchy-Schwarz Inequality (or Hölder with p = q = 2)

=

∫

E\En

|f |p−1|fn − f |

≥

∫

E\En

|fn − f |p−1|fn − f | since |f | ≥ |fn − f | on E \ En

=

∫

E\En

|fn − f |p.

Therefore
∫

E

|fn − f |p =

∫

En

|fn − f |p +

∫

E\En

|fn − f | <
ε

2
+

ε

2
= ε.

So ‖fn − f‖p → 0 as n → ∞ and {fn} → f with respect to the Lp norm for 1 ≤ p < 2.

Note. The Radon-Riesz Theorem does not hold for p = 1. Let n ∈ N and define fn(x) = 1+sin(nx)

on I = [−π, π]. then {fn} ⇀ f in L1[π, π] where f ≡ 1 by Royden and Fitzpatrick’s Theorem 8.11

since

lim
n→∞

(
∫ x

−π

fn

)

= lim
n→∞

∫ x

−π

(1 + sin(nt)) = lim
n→∞

(

t −
1

n
cos(nt)

)
∣

∣

∣

∣

π

−π

= lim
n→∞

(

(x −
1

n
cos(nx)) − (π −

1

n
cos(nπ))

)

= x + π =

∫ π

−π

1.

Also, as above,

lim
n→∞

‖fn‖1 = lim
n→∞

∫ π

−π

|1 + sin(nt)| dt = 2π = ‖f‖1.

However, {fn} = {1 + sin(nx)} does not converge to f ≡ 1 in L1[−π, π] since

lim
n→∞

‖fn − f‖1 = lim
n→∞

(
∫ π

−π

| sin(nx)| dx

)

= lim
n→∞

(

2n

∫ π/n

0

sin(nx) dx

)

= lim
n→∞

2n

(

−
1

n
cos(nx)

)
∣

∣

∣

∣

π/n

0

= lim
n→∞

(−2 cos π + 2cos 0) = 4 6= 0.

So {fn} ⇀ f in L1(I), lim
n→∞

‖fn‖1 = ‖f‖1, but {fn} does not converge strongly to f in L1(I).

Who is the Riesz guy? Frigyes Riesz (1880–1956) was born in Hungary, studied in Zurich,

Budapest, and Göttingen. In 1911 he started working at the University of Kolozsvàr, which was
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moved to Szeged in 1920. In 1946 he started at the University of Budapest. We first encountered

F. Riesz in the Riesz-Fischer Theorem of Section 7.3. This result was found independently by Riesz

and Emil Fischer (not to be confused with the better known mathematician Ronald A. Fisher)

and states that the Lp spaces are complete. We have also seen the Riesz Representation Theorem

in Section 8.1, which classifies bounded linear functionals on Lp. This result is from 1909 and

is probably Riesz’s best known result. Riesz is the one to introduce the idea of weak sequential

convergence in Lp. The index of Royden and Fitzpatrick also mentions Riesz’s Lemma, Riesz’s

Theorem, the Riesz-Fréchet Representation Theorem, the Riesz-Markov Theorem, and the Riesz-

Schauder Theorem. Riesz is one of the founders of functional analysis and he published LeÇons

d’analyse fonctionnelle in 1952, which he coathored with Béla Szőkefnalvy-Nagy. This book was

translated into English by L. Boron and published as Functional Analysis in 1955 (this is the

reference used for the above proof).

Frigyes Riesz (1880–1956)
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