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Special Topic: Black Holes

Primary Source: A Short Course in General Relativity, 2nd Ed., J. Foster and

J.D. Nightingale, Springer-Verlag, N.Y., 1995.

Note. Suppose we have an isolated spherically symmetric mass M with radius rB

which is at rest at the origin of our coordinate system. Then we have seen that the

solution to the field equations in this situation is the Schwarzschild solution:

dτ 2 =

(

1 −
2M

r

)

dt2 −

(

1 −
2M

r

)−1

dr2 − r2dϕ2 − r2 sin2 ϕdθ.

Notice that at r = 2M , the metric coefficient g11 is undefined. Therefore this

solution is only valid for r > 2M . Also, the solution was derived for points outside

of the mass, and so r must be greater than the radius of the mass rB. Therefore

the Schwarzschild solution is only valid for r > max{2M, rB}.
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Definition. For a spherically symmetric mass M as above, the value rS = 2M

is the Schwarzschild radius of the mass. If the radius of the mass is less than the

Schwarzschild radius (i.e. rB < rS) then the object is called a black hole.

Note. In terms of “traditional” units, rS = 2GM/c2. For the Sun, rS = 2.95 km

and for the Earth, rS = 8.86 mm.

Note. Since the coordinates (t, r, ϕ, θ) are inadequate for r ≤ rS , we introduce a

new coordinate which will give metric coefficients which are valid for all r. In this

way, we can explore what happens inside of a black hole!

Note. We keep r, ϕ, and θ but replace t with

v = t + r + 2M ln
∣

∣

∣

r

2M
− 1

∣

∣

∣
. (∗)

Theorem. In terms of (v, r, ϕ, θ), the Schwarzschild solution is

dτ 2 = (1 − 2M/r)dv2 − 2dv dr − r2dϕ2 − r2 sin2 ϕdθ. (∗∗)

These new coordinates are the Eddington-Finkelstein coordinates.

Proof. Homework! (Calculate dt2 in terms of dv and dr, then substitute into the

Schwarzschild solution.)

Note. These coordinates are named for Arthur Eddington (1882–1944) and David

Finkelstein (1929–2016), even though neither ever wrote down these coordinates or

the metric in these coordinates. Eddington’s paper mentions the Schwarzschild so-
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lution and appear as “A Comparison of Whitehead’s and Einstein’s Formulae,” Na-

ture, 113(2832), 192 (1924) (it is available online as www.strangepaths.com/files

/eddington.pdf). Finkelstein’s work is “Past-Future Asymmetry of the Gravita-

tional Field of a Point Particle,” Physical Reviews, 110, 965–967 (1958). Roger

Penrose (in “Gravitational Collapse and Space-Time Singularities,” Physical Re-

view Letters, 14(3), 57–59 (1965)) seems to have been the first to write down

the form we use, but credits it (wrongly) to the above paper by Finkelstein,

and, in his Adams Prize essay later that year, to Eddington and Finkelstein.

Most influentially, Misner, Thorne and Wheeler, in their colossal book Gravitation

(W. H. Freeman and Company, 1973), refer to the coordinates as “Eddington-

Finkelstein coordinates.” This information is from the Wikipedia webpage at

en.wikipedia.org/wiki/Eddington%E2%80%93Finkelstein coordinates (ac-

cessed 7/7/2016).

Arthur Eddington David Finkelstein Gravitation

Eddington image from Wikipedia, Finkelstein image from: www.physics.gatech.

edu/user/david-finkelstein, and Gravitation image from Amazon.
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Note. Each of the coefficients of dτ 2 in Eddington-Finkelstein coordinates is de-

fined for all nonzero r > rB. Therefore we can explore what happens for r < rS in

a black hole. We are particularly interested in light cones.

Note. Let’s consider what happens to photons emitted at a given distance from

the center of a black hole. We will ignore ϕ and θ and take dϕ = dθ = 0. We

want to study the radial path that photons follow (i.e. radial lightlike geodesics).

Therefore we consider dτ = 0. Then (∗∗) implies

(1 − 2M/r)dv2 − 2dv dr = 0,

(1 − 2M/r)
dv2

dr2
− 2

dv

dr
= 0,

(

dv

dr

) (

(1 − 2M/r)
dv

dr
− 2

)

= 0.

Therefore we have a lightlike geodesic if
dv

dr
= 0 or if

dv

dr
=

2

1 − 2M/r
.

Note. First, let’s consider radial lightlike geodesics for r > rS . Differentiating (∗)

gives

dv

dr
=

dt

dr
+ 1 +

1

r/2M − 1

=
dt

dr
+

r/2M

r/2M − 1
=

dt

dr
+

1

1 − 2M/r
.

With the solution dv/dr = 0, we find

dt

dr
=

−1

1 − 2M/r
.
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Notice that this implies that dt/dr < 0 for r > 2M . Therefore for dv/dr = 0 we see

that as time (t) increases, distance from the origin (r) decreases. Therefore dv/dr =

0 gives the ingoing lightlike geodesics. With the solution dv/dr = 2/(1 − 2M/r),

we find
dt

dr
=

2

1 − 2M/r
−

1

1 − 2M/r
=

1

1 − 2M/r
.

Notice that this implies that dt/dr > 0 for r > 2M . Therefore for dv/dr = 2/(1 −

2M/r), we see that as time (t) increases, distance from the origin (r) increases.

Therefore dv/dr = 2/(1 − 2M/r) gives the outgoing lightlike geodesics. Therefore

for r > 2M , a flash of light at position r will result in photons that go towards the

black hole and photons that go away from the black hole (remember, we are only

considering radial motion).

Note. Now, let’s integrate the two solutions above so that we can follow lightlike

geodesics in (r, v) “oblique coordinates.” Integrating the solution dv/dr = 0 gives

v = A (A constant). Integrating the solution dv/dr = 2/(1 − 2M/r) gives

v =

∫

dv

dr
dr =

∫

2 dr

1 − 2M/r
=

∫

2r dr

r − 2M

= 2

∫
(

1 +
2M

r − 2M

)

dr = 2r + 4M ln |r − 2M | + B,

B constant. In the following figure (Figure 4.13 from the Foster and Nightingale

book), we use oblique axes and choose A such that v = A gives a line 45◦ to the

horizontal (as in flat spacetime). The choice of B just corresponds to a vertical

shift in the graph of v = 2r + 4M ln |r− 2M | and does not change the shape of the

graph (so we can take B = 0).
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The little circles represent small local lightcones. Notice that a photon emitted

towards the center of the black hole will travel to the center of the black hole (or at

least to rB). A photon emitted away from the center of the black hole will escape

the black hole if it is emitted at r > rS = 2M . However, such photons are “pulled”

towards r = 0 if they are emitted at r < rS. Therefore, any light emitted at r < rS

will not escape the black hole and therefore cannot be seen by an observer located

at r > rS . Thus the name black hole. Similarly, an observer outside of the black

hole cannot see any events that occur in r ≤ rS and the sphere r = rS is called the

event horizon of the black hole.
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Note. Notice the worldline of a particle which falls into the black hole. If it

periodically releases a flash of light, then the outside observer will see the time

between the flashes taking a longer and longer amount of time. There will therefore

be a gravitational redshift of photons emitted near r = rS (r > rS). Also notice

that the outside observer will see the falling particle take longer and longer to reach

r = rS. Therefore the outside observer sees this particle fall towards r = rS, but

the particle appears to move slower and slower.

Note. Notice that the particle falling into the black hole will see photons from

the outside observer. You can trace the path of a photon along a line of slope 1

backwards from the time the particle reaches r = 0 to determine the last thing the

particle sees before it reaches the singularity at the center of the black hole. You

may have heard it said that when you fall into a black hole you will see the whole

evolution of the universe to t = ∞ before you reach the singularity. In fact, Neil

deGrasse Tyson comments in the 2014 Cosmos, A Spacetime Odyssey, “A Sky Full

of Ghosts” (episode 4) that “If you somehow survive the perilous journey across

the event horizon, you’d be able to look back and see the entire future history of

the universe unfold before your eyes.” (This is at 34:00 in the version without

commercials.) But this contradicts our diagram. Our diagram, though, is for a

Schwarzschild black hole! The details which explain deGrasse Tyson’s comment

can be found on the University of California, Riverside webpage at:

http://math.ucr.edu/home/baez/physics/Relativity/

BlackHoles/fall in.html

It explains that for charged or rotating black holes (assumptions which we did

not make in the Schwarzschild black hole model) “timelike wormholes” serve as

gateways to other universes and instead of hitting a singularity at the center of the
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black hole, you experience an infinite speed-up effect as you enter the wormhole.

In this setting, you would see the “entire future history of the universe” (deGrasse

Tyson goes on to discuss wormholes in his presentation).

Note. Notice that the radial lightlike geodesics determined by dv/dr = 2(1−2M/r)

have an asymptote at r = rS. This will result in lightcones tilting over towards the

black hole as we approach r = rS:

(Figure 46, page 93 of Principles of Cosmology and Gravitation, M. Berry, Cam-

bridge University Press, 1976.) Again, far from the black hole, light cones are as

they appear in flat spacetime. For r ≈ rS and r > rS, light cones tilt over towards

the black hole, but photons can still escape the black hole. At r = rS, photons are

either trapped at r = rS (those emitted radially to the black hole) or are drawn

into the black hole. For r < rS, all worldlines are directed towards r = 0. Therefore

anything inside rS will be drawn to r = 0. All matter in a black hole is therefore

concentrated at r = 0 in a singularity of infinite density.

Note. The Schwarzschild solution is an exact solution to the field equations. Such

solutions are rare, and sometimes are not appreciated in their fullness when in-

troduced. Here is a brief history from Black Holes and Time Warps: Einstein’s
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Outrageous Legacy by Kip Thorne (W.W. Norton and Company, 1994).

1915 Einstein (and David Hilbert (1862-1943)) formulate the field equations (which

Einstein published in 1916).

David Hilbert in 1910 (from the MacTutor History of Mathematics archive).

1916 Karl Schwarzschild presents his solution which later will describe nonspin-

ning, uncharged black holes.

1916 & 1918 Hans Reissner and Gunnar Nordström give their solutions, which

later will describe nonspinning, charged black holes. (The ideas of black holes,

white dwarfs, and neutron stars did not become part of astrophysics until the

1930’s, so these early solutions to the field equations were not intended to

address any questions involving black holes.)



Special Topic: Black Holes 10

1958 David Finkelstein introduces a new reference frame for the Schwarzschild

solution, resolving the 1939 Oppenheimer-Snyder paradox in which an im-

ploding star freezes at the critical (Schwarzschild) radius as seen from outside,

but implodes through the critical radius as seen from inside.

1963 Roy Kerr (1931– ) gives his solution to the field equations.

From http://scienceworld.wolfram.com/biography/KerrRoy.html

1965 Boyer and Lindquist, Carter, and Penrose discover that Kerr’s solution de-

scribes a spinning black hole.

Some other highlights include:

1967 Werner Israel (1931– ) proves rigorously the first piece of the black hole “no

hair” conjecture: a nonspinning black hole must be precisely spherical.

From http://www.thecanadianencyclopedia.ca/en/article/werner-isr

ael/
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1968 Brandon Carter (1942– ) uses the Kerr solution to show frame dragging

around a spinning black hole.

From luth2.obspm.fr/∼luthier/carter/ and www.wbur.org/npr/136000666

/nasa-mission-confirms-two-of-einsteins-theories

1969 Roger Penrose (1931– ) describes how the rotational energy of a black hole

can be extracted in what became known as the Penrose mechanism.

From http://www.worldofescher.com/misc/penrose.html

1972 Carter, Hawking, and Israel prove the “no hair” conjecture for spinning black

holes. The implication of the no hair theorem is that a black hole is described

by three parameters: mass, rotational rate, and charge.
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1974 Stephen Hawking (1942–2018) shows that it is possible to associate a tem-

perature and entropy with a black hole. He uses quantum theory to show that

black holes can radiate (the so-called Hawking radiation).

From http://www.universetoday.com/123487/who-is-stephen-hawking/

1993 Russell Hulse (1950– ) and Joseph Taylor (1941– ) are awarded the Nobel

Prize for an indirect detection of gravitational waves from a binary pulsar.

From http://physicscapsule.com/editorial/ligo-gravitational-waves/
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2011 NASA’s Gravity Probe B confirms frame dragging around the Earth.

From https://en.wikipedia.org/wiki/Gravity Probe B

2015 Gravitational waves were directly detected for the first time by the Laser

Interferometer Gravity Wave Observatory (LIGO). The detection was of the

merger of a 29 solar mass black hole with a 36 solar mass black hole. Three

solar masses were converted into energy and released in the form of gravita-

tional waves. The merger occurred 1.3 billion light years away in the direction

of the Magellanic Clouds.
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These results appeared in Abbott et al. “Observation of Gravitational Waves

from a Binary Black Hole Merger,” Physical Review Letters 116, 061102

(2016). The paper is online at: journals.aps.org/prl/pdf/10.1103/Phys

RevLett.116.061102 .

2019 The Event Horizon Telescope collaboration is a global system of radio tele-

scopes. During 2017 radio telescopes at eight sites made observations of the

supermassive black hole at the center of the galaxy M87. On April 10, 2019 it

was announced at six news conferences held around the world that this black

hole had been imaged. A non-technical article describing the project is on

the JPL website “How Scientists Captured the First Image of a Black Hole”

at https://www.jpl.nasa.gov/edu/news/2019/4/19/how-scientists-cap

tured-the-first-image-of-a-black-hole/. A technical discussion is given

in “First M87 Event Horizon Telescope Results. I. The Shadow of the Super-

massive Black Hole” published in The Astrophysical Journal Letters 875:L1

2019 April 10 (available online in PDF at https://iopscience.iop.org/

article/10.3847/2041-8213/ab0ec7/pdf). The image from the JPL web-

site is:
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Note. Where to go next. . . It would be logical to explore the Kerr solution for a

rotating black hole next. The two references I recommend are:

1. James Foster and J. David Nightingale, A Short Course in General Relativity,

3rd Edition, NY: Springer-Verlag (2010). A section in this new edition is

“4.10. Rotating objects; the Kerr solution.”

2. Subrahmanyan Chandrasekhar (1910-1995), The Mathematical Theory of Black

Holes, Oxford University Press (1983) (reprinted in paperback 1992). This

includes several chapters on the Kerr solution: “Chapter 6, The Kerr Metric,”

“Chapter 7. The Geodesics in the Kerr Space-Time,” “Chapter 8. Electromag-

netic Waves in Kerr Geometry,” “Chapter 9. The Gravitational Perturbations

of the Kerr Black-Hole,” and “Chapter 10. Spin-1

2
Particles in Kerr Geom-

etry.” It also includes chapters on the Schwarzschild solution (Chapter 3),

perturbations of the Schwarzschild black hole (Chapter 4), and the Reisnner-

Nordström solution (Chapter 5). Chandrasekhar states the Kerr metric as
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(see page 289):

ds2 = ρ2
∆

Σ2
(dt)2 −

Σ2

ρ2

(

dϕ −
2aMr

Σ2
dt

)

2

sin2 θ −
ρ2

∆
(dr)2 − ρ2(dθ)2

where ∆ = r2 −2Mr + a2 (see equation (45) and page 280), ρ2 = r2 + a2 cos2 θ

(see equation (112)), Σ2 = (r2 + a2)2 − a2∆ sin2 θ (see equations (51) and

(121)), and a is a constant (see page 279).

Note. For a deeper study of differential geometry and general relativity, I recom-

mend Robert M. Wald’s General Relativity, University of Chicago Press (1984).

This is the one book which, in my opinion, strikes the best balance between a

pure math approach (which can be a bit esoteric and lose sight of the underlying

physics) and a primarily physical approach (which can lose sight of the mathemati-

cal details)! It is a physics book, though! The first Part (Chapters 1–6) introduces

manifolds, tensors, curvature, the field equations, and the Schwarzschild solution;

This would be the standard material covered in a one semester course, according to

Wald. The second Part (Chapters 7–14) concerns solution techniques and a chap-
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ter on black holes (including the topics of charged Kerr black holes, the Penrose

mechanism for the extraction of energy from a black hole, and the thermodynamics

of black holes). There are appendices on topological spaces, differential forms, Lie

derivatives, and Killing fields.

Note. For a deeper study from a pure math book, I like C.T.J. Dodson and

T. Poston’s Tensor Geometry: The Geometric Viewpoint and Its Uses, Springer

Verlag, Graduate Texts in Mathematics #130 (1991). This book seems to do a good

job on the necessary math, including chapters on affine spaces, dual spaces, metric

vector spaces (this is where the metric tensor is defined), manifolds, differentiation,

geodesics, and curvature. There is also a chapter on special relativity and a chapter

on general relativity (but these two chapters seem a bit conversant and light). I have

some online notes for this book at: http://faculty.etsu.edu/gardnerr/5310/

notes-Dodson-Poston.htm.

Revised: 7/4/2019


