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1.7 Geodesics

Note. A curve ~α(s) on a surface M can curve in two different ways. First, ~α can

bend along with surface M (the “normal curvature” discussed above). Second, ~α

can bend within the surface M (the “geodesic curvature” to be defined).

Recall. For curve ~α on surface M , α′′ can be written as components tangent and

normal to M as ~α′′ = ~α′′
tan + α′′

nor where

~α′′
tan = (ur′′ + Γr

iju
i′uj′) ~Xr

~α′′
nor = (Liju

i′uj′)~U
(29)

and the parameters on the right hand side are defined in Section 5. ~α′′
nor reflects

the curvature of ~α due to the bending of M and ~α′′
tan reflects the curvature of ~α

within M . Now

~α′′
tan · ~U =

{

(ur′′ + Γr
iju

i′uj′) ~Xr

}

· ~U = 0

(recall ~U =
~X1 × ~X2

‖ ~X × ~X2‖
) and

~α′′
tan · ~α′ = ~α′′

tan · ~α′ + 0 = ~α′′
tan · ~α′ + ~α′′

nor · ~α′

(recall ~α′ = ui′ ~Xi and ~Xi · ~U = 0)

= (~α′′
tan + ~α′′

nor) · ~α′ = ~α′′ · ~α′ = 0

(recall ‖~α′‖ = ‖~α′(s)‖ = 1 and ′ = d/ds).

Therefore ~α′′
tan is orthogonal to both ~U and ~α′. If we define ~w as the unit vector

~w = ~U × ~α′, then ~α′′
tan is a multiple of ~w (and ~w is a vector tangent to M).
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Definition I-7. Let ~α(s) be a curve on M where s is arc length. The geodesic

curvature of ~α at ~α(s) is the function kg = kg(s) defined by

~α′′
tan = kg ~w = kg(~U × ~α′). (30)

Recall. The scalar triple product of three vectors (in R
3) satisfies:

( ~A × ~B) · ~C = ( ~B × ~C) · ~A = ( ~C × ~A) · ~B.

Theorem 1.7.A. The geodesic curvature kg of curve ~α in surface M can be cal-

culated as

kg = ~U · ~α′ × ~α′′. (31)

Proof. Since kg ~w = ~α′′
tan we have

kg ~w · ~w = ~α′′
tan · ~w = ~α′′

tan · (~U × ~α′)

or

kg = (~α′′
tan + ~α′′

nor) · ~U × ~α′

(since ~α′′
nor is parallel to ~U)

= ~α′′ · ~U × ~α′ = ~U · ~α′ × ~α′′.

Definition I-8. Let ~α = ~α(s) be a curve on a surface M . Then ~α is a geodesic if

~α′′
tan = ~0 ( or equivalently, if ~α′′ = ~α′′

nor) at every point of ~α.
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Note. A geodesic on a surface is, in a sense, as “straight” as a curve can be on the

surface. That is, ~α has no curvature within the surface. For example, on a sphere

the geodesics are great circles.

Note. If ~α is a geodesic on M if and only if

ur′′ + Γr
iju

i′uj′ = 0 for r = 1, 2 (32a)

and

~U · ~α′ × ~α′′ = 0. (32b)

(We’ll use these LOTS!)

Example (Exercise 1.7.4(a)). Prove that on a surface of revolution, every merid-

ian is a geodesic.

Proof. Suppose

~X(u, v) = (f(u) cos v, f(u) sin v, g(u)).

Let ~m(s) = (f(s) cos v, f(s) sin v, g(s)) be a meridian of the surface (where we

assume the curve has been parameterized in terms of arclength s). Then

~m′(s) = (f ′(s) cos v, f ′(s) sin v, g′(s))

~m′′ = (f ′′(s) cos v, f ′′(s) sin v, g′′(s))

~m′ × ~m′′ = ((f ′(s)g′′(s)− f ′′(s)g′(s)) sin v, (−f ′(s)g′′(s) + f ′′(s)g′(s)) cos v, 0).

Now

~X1 × ~X2 = (−f(s)g′(s) cos v,−f(s)g′(s) sin v, f ′(s)f(s))
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and so

~U =
~X1 × ~X2

‖ ~X1 × ~X2‖
=

(−f(s)g′(s) cos v,−f(s)g′(s) sin v, f ′(s)f(s))

(f(s)g′(s))2 + (f ′(s)f(s))2
.

Therefore

~U · ~m′ × ~m′′ =
1

(f(s))2{(g′(s))2 + (f ′(s))2}
×{(f ′(s)g′′(s)− f ′′(s)g′(s))(−f(s)g′(s)) cos v sin v

+(−f ′(s)g′′(s) + f ′′(s)g′(s))(−f(s)g′(s)) cos v sin v, 0)}
=

1

(f(s))2{(g′(s))2 + (f ′(s))2}(0) = 0.

Therefore ~m(s) is a geodesic (see equation (32b)).

Definition. Let ~X(u1, u2) be a surface and let gij (see page 34) and Γr
ij (see page

43) be as defined in Sections 4 and 5. The Christoffel symbols of the first kind are

Γijk = Γr
ijgrk (33)

for i, j, k = 1, 2.

Definition. The Γr
ij defined in Section 1.5 are the Christoffel symbols of the second

kind.

Note. Since Γr
ij = Γr

ji (see (17), page 43) then Γijk = Γjik; that is, there is

symmetry in the first two indices of the Christoffel symbols of the first kind. Also,

since (gij)
−1 = (gij), we have Γm

ij = Γijkg
km.
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Theorem 1.7.B. Let ~X(u1, u2) be a surface and let gij and Γr
ij be as defined in

Sections 4 and 5. Then

Γijk = ~Xij · ~Xk (34)

Γijk =
1

2

(

∂gik

∂uj
+

∂gjk

∂ui
− ∂gij

∂uk

)

(36)

and

Γr
ij =

1

2
gkr

(

∂gik

∂uj
+

∂gjk

∂ui
− ∂gij

∂uk

)

. (37)

Proof. Since ~Xij = Γr
ij

~Xr + Lij
~U (by definition, see page 43) then

~Xij · ~Xk = Γr
ij

~Xr · ~Xk + (Lij
~U) · ~Xk = Γr

ijgrk + 0 = Γijk

establishing the first identity (recall grk = ~Xr · ~Xk). Next,

∂gik

∂uj
=

∂

∂uj
[ ~Xi · ~Xk] = ~Xij · ~Xk + ~Xkj · ~Xi = Γijk + Γkji. (35a)

Permuting the indices:

∂gji

∂uk
= Γjki + Γikj and

∂gkj

∂ui
= Γkij + Γjik. (35b and 35c)

Now

Γijk =
1

2
(2Γijk) =

1

2
(Γijk + Γjik)

=
1

2
(Γijk + Γkji − Γkji + Γkij − Γkij + Γjik) since Γijk = Γjik by

symmetry in the first two indices

=
1

2
{(Γijk + Γkji) + (Γkij + Γjik) − (Γjki + Γikj)} since Γkji = Γjki and

Γkij = Γijk by symmetry in the first two indices

=
1

2

(

∂gik

∂uj
+

∂gjk

∂ui
− ∂gij

∂uk

)
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and the second identity is established. Finally, multiplying this identity on both

sides by gkr, summing over k and using the definition of Γr
ij we have

Γr
ij = Γijkg

kr =
1

2
gkr

(

∂gik

∂uj
+

∂gjk

∂ui
− ∂gij

∂uk

)

(recall (gij) = (gij)
−1), and the third identity is established.

Note. Since the Christoffel symbols depend only on the metric form (or First

Fundamental Form), they are part of the intrinsic geometry of the surface M .

Definition. Let ~X(u1, u2) be a surface. Then the coordinates ~X1 and ~X2 are

orthogonal if g12 = g21 = 0. (This makes sense since gij = ~Xi · ~Xj.)

Corollary 1.7.A. Let ~X(u1, u2) be a surface and let gij and Γr
ij be as defined in

Sections 4 and 5. If ~X1 and ~X2 are orthogonal coordinates, then

Γr
ij =

1

2grr

(

∂gir

∂uj
+

∂gjr

∂ui
− ∂gij

∂ur

)

(no sums over any of i, j, r).

Proof. Since g12 = g21 = 0, then g12 = g21 = 0 and g11 = 1/g11, g22 = 1/g22. The

result follows from the above theorem.

Corollary 1.7.B. With the hypotheses of the previous corollary (with i, j, r = 1, 2),

when j = r

Γr
ir =

1

2grr

∂grr

∂ui
=

1

2

∂

∂ui
[ln grr]
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and when i = j 6= r

Γr
ii =

1

2grr

(

−∂gii

∂ur

)

.

Proof. Follows from g12 = g21 = 0.

Note. By symmetry, Γr
ij = Γr

ji, and so the previous two corollaries cover all possible

cases of orthogonal coordinates when i, j, r ∈ {1, 2} (i.e., when we deal with two

dimensions). In dimensions 3 and greater (in particular, in the 4 dimensional

spacetime of Chapter III) we have a third case which we state now, and address in

detail later:

Theorem 1.7.C. In dimensions 3 and greater, if coordinates are mutually orthog-

onal, then for i, j, r all distinct, Γr
ij = 0. (In the event that one or more of i, j, r are

equal, the above corollaries apply.)

Note. In the case of orthogonal coordinates, if we return to Gauss’ notation:

g11 = E, g12 = g21 = F = 0, g22 = G

we have the First Fundamental Form (or metric form) ds2 = Edu2 + Gdv2 on

surface ~X(u, v). In this notation, the Christoffel symbols are then

Γ1

11
= Eu

2E
Γ2

22
= Gv

2G

Γ1

12 = Γ1

21 = Ev

2E Γ2

21 = Γ2

12 = Gu

2G

Γ1

22 = −Gu

2E Γ2

11 = −Ev

2G.

(40)
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Example 17, page 62. In the Euclidean plane, ds2 = du2 + dv2. Therefore

E = G = 1 and all the Christoffel symbols are 0. Therefore a geodesic ~α satisfies

ur′′ + Γr
iju

i′uj′ = 0

for r = 1, 2, or ur′′ = 0 for r = 1, 2. That is, u1′′ = u′′ = 0 and u2′′ = v′′ = 0.

Therefore u(s) = as + b and v(s) = cs + d for some a, b, c, d. Therefore, geodesics

in the Euclidean plane are straight lines.

Note. We will show in Theorem I-9 that the shortest path on a surface joining two

points is a geodesic. This theorem, combined with the previous example PROVES

that the shortest distance between two points in a plane is a straight line. Oddly

enough, you’ve probably never seen this PROVED before!

Example 18, page 62. Consider a sphere of radius r with “geographic coordi-

nates” (like latitude and longitude) u and v. Then the sphere is given by

~X(u, v) = (r cos u cos v, r sin u cos v, r sin v)

(see Example 7, page 23). The metric form is (see page 33) ds2 = r2 cos2 vdu2 +

r2dv2 (since there is no du dv term, F = g12 = g21 = 0 and these coordinates are

orthogonal). Therefore E = r2 cos2 v and G = r2 (a constant). Then Eu = Gu =

Gv = 0 and the nonzero Christoffel symbols are

Γ1

12 = Γ1

21 =
Ev

2E
=

−2r2 cos v sin v

2r2 cos2 v
= − tan v

Γ2

11
=

−Ev

2G
=

2r2 cos v sin v

2r2
= cos v sin v.

It is shown in Exercise 1.7.14 (at the end of this section) that this implies geodesics

are great circles.
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Note. In Example 19 page 62, it is shown that the Euclidean plane when equipped

with polar coordinates (which are orthogonal coordinates) yields geodesics which

are lines (as expected).

Note. In general, to determine the geodesics for a surface, requires that one solve

differential equations. This can be difficult (sometimes impossible to do in terms

of elementary functions). In Chapter III we will compute some geodesics in 4-

dimensional spacetime (in fact, planets and light follow geodesics if 4-D spacetime).

Theorem I-9. Let ~α(s), s ∈ [a, b] be a curve on the surface M : ~X(u1, u2), where s

is arclength. If ~α is the shortest possible curve on M connecting its two end points,

then ~α is a geodesic.

Idea of Proof. We will vary ~α(s) by a slight amount ε. Then comparing the

arclength of ~α from ~α(a) to ~α(b) with the arclength of the slightly varied curve

from ~α(a) to ~α(b) and assuming ~α to yield the minimal arclength, we will show

that ~α satisfies equation (32a) and is therefore a geodesic.

Proof. Let ~α(s) = ~X(u1(s), u2(s)). Consider the family of curves of the form

U i(s, ε) = ui(s) + εvi(s)

for i = 1, 2, s ∈ [a, b] where vi are smooth functions with vi(a) = vi(b) = 0 for

i = 1, 2 (so ~X(U 1, U 2) still joins ~α(a) and ~α(b)), ~X(U 1, U 2) ⊂ M , but otherwise vi

are arbitrary. We take ~αε(s) = ~X(U 1(s, ε), U 2(s, ε)).
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Let L(ε) denote the length of ~αε:

L(ε) =

∫ b

a

λ(s, ε) ds

where

λ(s, ε) =

{

gij(U
1, U 2)

∂U i

∂s

∂U j

∂s

}1/2

(the square root of the metric form of M along ~αε). Now L has a minimum at

ε = 0 so
d

dε
[L(ε)] =

d

dε

[
∫ b

a

λ(s, ε) ds

]

=

∫ b

a

∂

∂ε
[λ(s, ε)] ds

(since λ and ∂λ/∂ε are continuous) satisfies

L′(0) =

∫ b

a

∂

∂ε
[λ(s, 0)] ds = 0.

Now

∂λ

∂ε
=

∂

∂ε

[

(

gij(U
1, U 2)

∂U i

∂s

∂U j

∂s

)1/2
]

=
1

2
(λ(s, ε))−1

{

∂

∂ε
[gij(U

1, U 2)]
∂U i

∂s

∂U j

∂s
+ gij(U

1, U 2)
∂

∂ε

[

∂U i

∂s

]

∂U j

∂s
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+gij(U
1, U 2)

∂U i

∂s

∂

∂ε

[

∂U j

∂s

]}

=
1

2λ(s, ε)

{(

∂

∂U 1
[gij(U

1, U 2)]
∂U 1

∂ε
+

∂

∂U 2
[gij(U

1, U 2)]
∂U 2

∂ε

)

∂U i

∂s

∂U j

∂s

+2gij(U
1, U 2)

∂U i

∂s

∂

∂ε

[

∂U j

∂s

]}

=
1

2λ(s, ε)

{(

∂

∂Uk
[gij(U

1, U 2)]
∂Uk

∂ε

)

∂U i

∂s

∂U j

∂s
+ 2gij(U

1, U 2)
∂U i

∂s

∂2U j

∂ε ∂s

}

=
1

2λ(s, ε)

{(

∂gij

∂Uk
vk

)

∂U i

∂s

∂U j

∂s
+ 2gij

∂U i

∂s

∂2U j

∂ε ∂s

}

(notice that we sum

over k here since we treat the partial derivative with respect to Uk

as if it were a subscript)

since
∂Uk

∂ε
= vk. With ε = 0,

∂U j

∂ε
= vj and λ(s, 0) = 1 (because λ(s, ε) ds|ε=0 =

‖α′‖ ds = 1 ds; s is arclength on ~α = ~α0) we have

∂λ

∂ε
(s, 0) =

1

2

(

∂gij

∂Uk
vkU i′U j′ + 2gikU

i′vk′
)

and since ε = 0 implies U i = ui, then

∂λ

∂ε
(s, 0) =

1

2

(

∂gij

∂uk
vkui′uj′ + 2giku

i′vk′
)

and so

L′(0) =
1

2

∫ b

a

(

∂gij

∂uk
ui′uj′vk + 2giku

i′vk′
)

ds = 0.

Now by Integration by Parts
∫ b

a

2giku
i′vk′ds Let u = 2giku

i′ and dv = vk′ds.

Then du =
∂

∂s
[2giku

i′]ds and v =

∫

vk′(s)ds = vk.

=

{

2giku
i′vk −

∫

∂

∂s
[2giku

i′]vkds

}∣

∣

∣

∣

b

a
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= 0 −
∫ b

a

∂

∂s
[2giku

i′]vkds since vk(a) = vk(b) = 0.

Therefore

L′(0) =
1

2

∫ b

a

(

∂gij

∂uk
ui′uj′vk − ∂

∂s
[2giku

i′]vk

)

ds

=
1

2

∫ b

a

(

∂gij

∂uk
ui′uj′ − ∂

∂s
[2giku

i′]

)

vkds

= 0.

Since the integral must be zero for all arbitrary vk (and since
∫ b

a f(s)g(s) ds = 0

for arbitrary g(s) implies f(s) = 0), then the remaining part of the integrand must

be zero:
1

2

∂gij

∂uk
ui′uj′ − ∂

∂s
[giku

i′] = 0

for k = 1, 2. Now when ε = 0, U i = ui and

∂

∂s
[giku

i′] =
∂

∂s
[gik(u

1, u2)ui′]

=

(

∂gik

∂u1

du1

ds
+

∂gik

∂u2

du2

ds

)

ui′ + gik(u
1, u2)

dui′

ds

=

(

∂gik

∂u1
u1′ +

∂gik

∂u2
u2′

)

ui′ + gik(u
1, u2)ui′′

=

(

∂gik

∂uj
uj′

)

ui′ + gmku
m′′ =

∂gik

∂uj
uj′ui′ + gmku

m′′.

Therefore
1

2

∂gij

∂uk
ui′uj′ − ∂

∂s
[giku

i′] = 0

for k = 1, 2 implies

1

2

∂gij

∂uk
ui′uj′ − ∂gik

∂uj
ui′uj′ − gmku

m′′ = 0

for k = 1, 2, or using the notation of equations (35a, 35b, 35c)
{

1

2
(Γikj + Γjki) − (Γkji + Γijk)

}

ui′uj′ − gmku
m′′ = 0 (∗)
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for k = 1, 2. Since Γikju
i′uj′ = Γjkiu

i′uj′ (interchanging dummy variables i and j)

and Γkji = Γjki (symmetry in the first and second coordinates) then
{

1

2
(Γikj + Γjki) − Γkji

}

ui′uj′ =

{

1

2
(Γjki + Γjki) − Γjki

}

ui′uj′ = 0

and the above equation (∗) becomes

Γijku
i′uj′ + gmku

m′′ = 0

for k = 1, 2. Multiplying by gkr and summing over k:

Γijkg
krui′uj′ + gkrgmku

m′′ = 0 or Γr
iju

i′uj′ + ur′′ = 0

for r = 1, 2. This is equation (32a) and therefore ~α is a geodesic of M .

Note. Again, Theorem I-9 along with Example 17 shows that the shortest distance

between two points in the Euclidean plane is a “straight line.” Theorem I-9 along

with Example 18 show that the shortest distance between two points on a sphere is

part of a great circle (explaining apparently unusual routes on international airline

flights).

Note. The converse of Theorem I-9 is not true. That is, there may be a geodesic

joining points which does not minimize distance. (Recall that we set L′(0) ≡ 0,

but did not check L′′(0); we may have a maximum of L!) For example, we can

travel the six miles from Johnson City to Jonesborough (along a very small piece

of a geodesic), or we can travel in the opposite direction along a very large piece of

a geodesic (≈ 24, 000 miles) and travel around the world to get to Jonesborough

(NOT a minimum distance).
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Note. Not all surfaces may allow one to create a geodesic joining arbitrary points.

For example, the Euclidean plane minus the origin does not admit a geodesic from

(1, 1) to (−1,−1).

Note. In the next theorem, we prove that for any point on a surface, there is a

unique (directed) geodesic through that point in any direction.

Theorem I-10. Given a point ~P on a surface M and a unit tangent vector ~v at

~P , there exists a unique geodesic ~α such that ~α(0) = ~P and ~α′(0) = ~v.

Proof. Let ~P = ~X(u1

0
, u2

0
) and ~v = vi ~Xi(u

1

0
, u2

0
). We need two functions ur(t),

r = 1, 2 where
{

ur′′ + Γr
iju

i′uj′ = 0 for r = 1, 2

ur(0) = ur
0
, ur′(0) = vr for r = 1, 2.

This is a system of two ordinary differential equations in two unknown functions,

each with two initial conditions. Such a system of IVPs has a unique solution (check

out the chapter of an ODEs book entitled “Existence and Uniqueness Theorems”)

ur(t) for r = 1, 2. We now only need to establish that t represents arclength. With

s equal to arclength,

(

ds

dt

)2

= E

(

du

dt

)2

+ 2F

(

du

dt

dv

dt

)

+ G

(

dv

dt

)2

= giju
i′uj′ ≡ f(t)

is the metric form and if we show this quantity is 1, then |t| = s and t equals

arclength (we need ~α(0) = ~v to eliminate the negative sign; this is insured by the

initial conditions). Well,

f(0) = gij(u
1

0, u
2

0)u
i′(0)uj′(0) = ~Xi(u

1

0, u
2

0) · ~Xj(u
1

0, u
2

0)u
i′(0)uj′(0)
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= ~Xi(u
1

0
, u2

0
) · ~Xj(u

1

0
, u2

0
)vivj =

(

vi ~Xi(u
1

0
, u2

0
)
)

·
(

vj ~Xj(u
1

0
, u2

0
)
)

= ~v · ~v = ‖~v‖2 = 1.

Next,

f ′(t) =
∂gij

∂uk
uk′ui′uj′ + giju

i′′uj′ + giju
i′uj′′.

Since

∂gij

∂uk
= Γikj + Γjki (equation (35b), page 60)

= Γr
ikgrj + Γr

jkgri (equation (33), page 59)

= gjrΓ
r
ik + girΓ

r
jk (symmetry of gij)

then

f ′(t) = (gjrΓ
r
ik + girΓ

r
jk)u

i′uj′uk′ + grju
r′′uj′ + giru

i′ur′′

= giru
i′(ur′′ + Γr

jku
j′uk′) + grju

j′(ur′′ + Γr
iku

i′uk′)

= 0 (from the first condition of the ODE).

Therefore f(t) is a constant and f(t) = 1. Hence

(

ds

dt

)2

= f(t) = 1 and t = s

(that is, t is arclength). Therefore ~α(s) = ~X(u1(s), u2(s)) is the desired geodesic.

Example (Exercise 1.7.14(a)). If M has metric form ds2 = Edu2 + Gdv2 with

Eu = Gu = 0, then a geodesic on M satisfies

du

dv
=

h
√

G√
E
√

E − h2

for some constant h (see Exercise 1.7.12). Use this above equation to show that a

geodesic on the geographic sphere

~X(u, v) = (R cos u cos v,R sin u cos v,R sin v)
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satisfies
du

dv
=

h sec2 v√
R2 − h2 sec2 v

=
h sec2 v√

R2 − h2 − h2 tan2 v
where h is a constant.

Solution. First,

~X1 = (−R sin u cos v,R cos u cos v, 0)

~X2 = (−R cos u sin v,−R sinu sin v,R cos v)

E = g11 = ~X1 · ~X1 = R2 cos2 v

G = g22 = ~X2 · ~X2 = R2 sin2 v + R2 cos2 v = R2.

Then

du

dv
=

h
√

R2

√
R2 cos2 v

√
R2 cos2 v − h2

=
hR

R cos v
√

R2 cos2 v − h2
since v ∈ (−π/2, π/2)

=
h sec v

cos v
√

R2 − h2 sec2 v
=

h sec2

√

R2 − h2(1 + tan2 v)

=
h sec2 v√

R2 − h2 − h2 tan2 v
.

Example (Exercise 1.7.14(b)). Substitute w = h tan v and integrate the above

equation to obtain cos(u − u0) + γ tan v = 0 where u0 and γ are constants.

Solution. With w = h tan v, dw = h sec2 v dv and so

u =

∫

h2 sec2 v√
R2 − h2 − h2 tan2 v

dv

= −
∫ −1√

R2 − h2 − w2
dw = − cos−1

(

w√
R2 − h2

)

+ u0.
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Therefore

cos(u − u0) =
w√

R2 − h2
=

h tan v√
R2 − h2

.

With γ = −h/
√

R2 − h2 we have

cos(u − u0) + γ tan v = 0.

Example (Exercise 1.7.14(c)). Show that the equation given in (b) when writ-

ten in Cartesian coordinates is a linear equation of the form αx + βy + γz = 0 and

so represents the intersection of the sphere with a plane passing through the origin

(and therefore the geodesic is a great circle).

Solution. Multiplying by R cos v on each side of the equation gives R cos v cos(u−
u0) + γR sin v = 0 or R cos v(cos u cos u0 + sinu sin u0) + γR sin v = 0 or

(cos u0)R cos u cos v + (sin u0)R sin u cos v + γR sin v = 0.

In cylindrical coordinates, ρ, θ, ϕ, we have the relationships x = r cos θ sin ϕ, y =

ρ sin θ sin ϕ, and z = ρ cos ϕ. Here, our R corresponds to cylindrical coordinates’ ρ

and our u corresponds to cylindrical coordinates’ θ. However, our v does not cor-

respond to ϕ of cylindrical coordinates but instead corresponds to π/2−ϕ (see my

Calculus 3 notes http://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s7.pdf).

Our coordinates relate to rectangular coordinates as x = R cos u sin(π/2 − v) =

R cos u cos v, y = R sin u sin(π/2 − v) = R sin u cos v, and z = R cos(π/2 − v) =

R sin v. So the above equation is of the form αx + βy + γz = 0 where α = cos u0,

β = sin u0, and γ is a constant (as given in part (b)).
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