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1.8 The Curvature Tensor and

the Theorema Eqgregium

Recall. A property of a surface which depends only on the metric form is an
intrinsic property. We have shown (Theorem I-5) that the Gauss curvature at
a point P is K (13) = L/g where L is the Second Fundamental Form and ¢ is
the determinate of the matrix of the First Fundamental Form (or metric form).
Therefore, to show that curvature is an intrinsic property of a surface, we need
to show that L is a function of the g;; (and their derivatives) which make up the

metric form.

Recall. For a surface M determined by X (u!,u?) the coefficients of the Second
Fundamental Form are

- — X1><X2

Lii=X;i-U=X;; - —-""2_ (equation (20), page 44
J J ]HX1><X2H(q (20), pag )

and
L' = Ljig" (equation (27), page 54)

and the Christoffel symbols are

1 gik | Ogjr. 0y
| - kr Z. J. o ()
0= 97 (8u3 "0 odk

(equation (37), Theorem 1.7.B). Also recall the formulas of Gauss

Xjr =T X, + LU (equation (17), page 43)
and the formulas of Weingarten

U; = —L{)Z'j (equation (28), page 55).
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Lemma 1.8.A. The coefficients of the Second Fundamental Form and the Christof-
fel symbols are related as follows (for h = 1,2):

ory,  orl

o~ o L 4TI — T = Ll — Ly L. (51)

Proof. Differentiating the formulas of Gauss:

Xy, orh o, 98X, OLiy ~ U
- = —2 X, 4+ 1 . ~U + Lj—
ou’ oui " Tl ou’ * ou’ * " ou
or by defining 9/0u/ with a subscript of j
— arlk ik 7
Ky = 58X+ DX+ 50 in

Using the formulas of Gauss and Weingarten to rewrite X n; and U ; we get

Xikj = 50 Zk

or (by interchanging h and r in the second term [since we are summing over both])

ik(_L?Xh)

r - Li =
Xp+Th(I0 X, + Ly;U) + 5

> 8FZ€

Xitj = 5 Xy + 5 (T X + L U) + aulj a(—LIX})
_ arzk h h % r ale 7
— (au + Ty LikL]) Xh+( il + 2 | U (49)

Interchanging 5 and k gives

. ory, . OL;;\ -
Xijk = (8 1;7 + FT F LijLZ> Xy, + (Ff L 50 k) U (50)
(so we have Xijk broken into a component normal to surface M and components

which lie in the tangent plane to M at a given point; namely the components in

directions )Z'l and X’g) We have assumed that X is sufficiently continuous that
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X’ikj = Xijk and so Xikj — X}-jk = (. Subtracting (50) from (49) and using the fact

that the coefficients of X 1 and )52 in the resultant are 0 we have

aF?k aF?J r Th r 1h h h
for h = 1,2 and the result follows. i

Definition. For a surface M with Christoffel symbols as above, define

Rh ore 8F?j
R 0w Ouk

+ fkrfj_ gjrfk' (52)

These make up the Riemann-Christoffel curvature tensor (with h = 1,2).

Note. Since the Christoffel symbols (Ffj’s) are intrinsic properties of surface M by
equation (37) of Theorem 1.7.B, the Riemann-Christoffel curvature tensor is also

an intrinsic property of M.

Note. Interchanging j and k we trivially have R?jk = —R?kj. (53)

Theorem I-11. Gauss’ Theorema Egregium.
The Gauss curvature of a surface is an intrinsic property. That is, the Gauss
curvature of a surface is a function of the coefficients of the metric form and their

derivatives.

Proof. From the Lemma 1.8.A and definition of R?jk we have

Rl = LyL! — Li;L}. (54)
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Now define R, = gmhR?jk = ngR;fjk. Then Rfjk = ¢"" Ryijr. Now the Riemann-
Christoffel curvature symbols R?jk are intrinsic and therefore R,,;;; are also intrin-
sic. Multiplying (54) by g gives (summing over h = 1,2)

G Rl = grnLir L — gunLij L = gnnLixL? — gnn Lis L},
or Ryijk = LigLjm — LijLgm since gimLé- = Ljn (equation (27') in the notes and
page 54 in the line after equation (27) in the book). In particular, with m,j = 1
and i,k = 2

Ri212 = LogLi1 — Loj Loy

= L11L22 — L12L21 (since Lij = Lji; by equation (20), page 44)

Therefore, since R,,;j; are intrinsic, then L is intrinsic since, by Theorem I-5,

K = L/g = Ry212/¢ is intrinsic! |
Note. We now give an explicit equation for K in terms of the metric form.

Corollary 1.8.A. For a surface M determined by X (u,v) = X (u!, u?) the curva-

ture is given by

1 1 T T
Fu — zEp — Gy + (F?z 12 — ng 11)grh

1
K=-
g 2 2

where
g1 = X1- X, =F
g2 = X1-Xo=F =gy
g = X3-X3=G

g = det(gij)
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and

1 Ogik  Ogj 09y
r. == kr Z. ]' . v]
=99 ((%LJ T w T dub
where (gi;) ™' = (¢").
Proof. Since R, = gmhR?jk (by the definition of the Riemann-Christoffel curva-
ture tensor; equation (55), page 76) and

ar?k th h r
Rljy = S — == 4TI, — DT,

(equation (52), page 75) then

Rl oL oL T Tl

Imhilijr = Gmh 8 — 9mh Ik — 9mh

or

orh orn .

Ronijie = G2 + Gy Tik, = G = g3 (S G = Gonn)
or’, n ;
= 9mh— Ow + Frjm — 9mh (9uk] - FTkmFij (*)

since T'yjx = [, gt (equation (33), page 59). Now, interchanging the indices in
equation (33) we have g,,;,I'" = Ty, or differentiating with respect to u’

agmhr aFZ{ . arzkm
ou Imh 5 = " ou

or
T ikm v Oghm
G = w9 ow ()

Now using (k) in () we have

Roniji = (—’“ — 1 g—h> + Crjonl - ( gl 2t ) — Tl

ou’ * O ouk Y ouk v
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Replacing r by h in the products of I'’s gives

Rinijh = ( - Iy 2 ) +thmrzhk - ( i FZ%) - FhkmFZhj‘

o ou Ouk

Now
1 (0gim = Ogmr O ,
Cipm = 3 (aguk + aguzk — 851:7@) (equation (36), page 60)
and
aghm T T .
5~ Lhim + I'yn (equation (35), page 60)
= Dhjm + 17,901 (equation (33), page 59)
SO
0 |1 [(0gim . Ogmk Ogri A h
Rmi' = 3 15 — — FFm—F F'm FT-T
LW [2 (auk T 5w~ gur )| T nim = DT+ Toggrn)

g (3 (50 + )| <P O
% (aijgg:bk + aa;ggii - aszgz» + il =TTy + o)
=3 (a3 ) ~ e+ T+ T
- % (aa;-géﬁi - aiigézk * 35: o~ aszgifm> + (5T = Tl o

Sowithm=j=1andi=k =2

1 %o B %911 n % 9o B 9% 922
2 \oulou? Ou2ou?  Ou2oul Ouloul

+(T5 T — DT ) gen
(Fuv - Evv =+ Fuv - Guu) + (Fglrb o F32F7£1)9Th'

Ri212 =

N | —

Since K = Ri912/¢g (equation (57), page 76), and the result follows.
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Corollary 1.8.B. For a surface M determined by X (u, v) with orthogonal coordi-
nates (X; - Xo = F = 0) the curvature is

- (S )
2VEG \Ou |VEG] 0v |VEG]|)
Proof. With F' = 0 and equation (40) of page 62 (which gives the Christoffel

symbols in an orthogonal coordinate system in terms of £ and G) we have

1 1 1
K = E_G {_iEvv - 2Guu + ((F ) F22F11)gll -+ ((F%2)2 — F§2F%1)g22}
i) = gug2 = EG)
2

e (@ ()
(%) - (%) (-5) )}

2
1 E?  E,G, 2 B,G,
1E“”‘§G““+< 2Rl G>E+<Gu+ G>G}

(since g12 = go1 = 0 and det

1
- EG {_2 AE? T 4E? 162 AG2
1 lE e EE+ EE,G, GG+ E,GG,
B EG el g 4FE? 4G2
E?+ E,G
_ VEGE, +VEGG., ~ VEG (2525
2EG\/ { 2F
G? + E,G,
VEG [ = v
(%))
e e GE? + E,GG
— Evv + Guu - £ e -
2EG\/ { 2WEG
 EG:+ EE,G, }
2\/
EG, + E,G)
- \/_Evv + \/_Guu - ( - -
2EG\/ { 2WEG

’U(EG’U + E’UG) }
2WEG
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(EGutEuG) B, (EG,+E,G)
_ -l JVECCw R VEGEN WG

2VEG EG EG

N QJEI_G{%[\/CZ—G]+%[\/]%—G]}'

Note. The equation given in the previous corollary will be useful in the exercises

in this section.
Note. Some symmetry relations in R, are given at the end of the section.

Example (Exercise 2, page 80). Let

X (u,v) = (f(u) cosv, f(u)sinv, g(u))

be a surface of revolution whose profile curve a(u) = (f(u),0, g(u)) has unit speed.
Show that K = —f"/f.

Solution. By Exercise 1.4.5, page 39, E = g11 = (f'(u))? + (¢'(v))?, F = g1 =
ga1 = 0 (coordinates are orthogonal), G = g2 = (f(u))?. So by equation (59), page

78,
-1

)" (w)? + (¢ (w)?}

{ Kl [ (u) f'(u)
u F(w)? + (g ()%}
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Now assuming || @] = +/(f'(v))? + (¢'(v))? = 1 and f(u) > 0O:

_ —1 3 "(u _ _f”(u)
K_2f(u){8u[2f ( ”} )

Example (Exercise 5 (b), page 81). The pseudosphere may be represented as

the surface of revolution

—

X(u,v) = (a sinu cos v, asinusin v, a [cosu +In (tan %)D

for u € (0,7/2). Show that K = —1/a? (and so the pseudosphere has constant

negative curvature).

Solution. In Exercise 5 (a), you will show that £ = a?cot?u and G = a?sin®u.

Therefore by equation (59), page 78:

—1 0 2a? sin u cos u (9
K = —[0]
2V a4 cot? usin® u du Vat cot? usin?u (91}

—1 9 [ 2a®sinucosu since u € (0, 7/2)
— - ince u T
2a% cot? usin?u Ou | at cot? usinu
1 9
— — |2sinu
2a4 cot? u sin? u@u[ )
—1 — cot —1
= ——(2cosu) = ek >

2a% cot? usin® u a’cotu a
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Note. The pseudosphere looks like (from: http://virtualmathmuseum.org/
Surface/pseudosphere/pseudosphere.html):

Note. In the zz—plane, the profile curve of the pseudosphere is (from: http:

//xahlee.info/SpecialPlaneCurves dir/Tractrix dir/tractrix.html):

We get the point (z,z) = (0,1) for u = 7/2. Let’s calculate the arclength s for u
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ranging from 7/2 to u*:

u*

s = — 2'(u))? 4+ (/(u))? du (since u* < 7/2)
— / \/C082 sinu+%> du
- / \/0052“+ _Slnu+281n(u/2icos(u/2)> u
:/ \/coszu+ —smu+smu>2du

= / \/coszu+sin2u—2+csczudu
u*

/2 /2
= / \/csczu—ldu:/ | cot u| du

/2 /2
= / cot udu = In(sin u)

*

— In(sinu®).

u*

S

Therefore exp(—arclength) = =% = e~ (-6 v) — gin 4* = 2*. So we have v = e~
where s is arclength. This curve is called a tractriz. It can be generated by placing
a box at point (0,1) and dragging it by attaching a 1 unit rope and pulling along
the z—axis (therefore the tangent line at any point meets the z—axis 1 unit from

the point of tangency; based on the previous figure):
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