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2.7 The Lorentz Transformation

Note. We seek to find the transformation of the coordinates (x, y, z, t) in an

inertial frame S to the coordinates (x′, y′, z′, t′) in inertial frame S′. Throughout

this section, we assume the x and x′ axes coincide, S′ moves with velocity β in the

direction of the positive x axis, and the origins of the systems coincide at t = t′ = 0.

Note. Classically, we have the relations

x = x′ + βt

y = y′

z = z′

t = t′
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Definition. The assumption of homogeneity says that there is no preferred location

in space (that is, space looks the same at all points [on a sufficiently large scale]).

The assumption of isotropy says that there is no preferred direction in space (that

is, space looks the same in every direction).

Note. Under the assumptions of homogeneity and isotropy, the relations between

(x, y, z, t) and (x′, y′, z′, t′) must be linear (throughout, everything is done in geo-

metric units!):

x = a11x
′ + a12y

′ + a13z
′ + a14t

′

y = a21x
′ + a22y

′ + a23z
′ + a24t

′

z = a31x
′ + a32y

′ + a33z
′ + a34t

′

t = a41x
′ + a42y

′ + a43z
′ + a44t

′.

If not, say y = ax′2, then a rod lying along the x−axis of length xb − xa would

get longer as we moved it out the x−axis, contradicting homogeneity. Similarly,

relationships involving time must be linear (since the length of a time interval

should not depend on time itself, nor should the length of a spatial interval).

Note. We saw in Section 2.5 that lengths perpendicular to the direction of motion

are invariant. Therefore

y = y′

z = z′



2.7 The Lorentz Transformation 3

Note. x does not depend on y′ and z′. Suppose not. Suppose there is a flat plate at

rest in S′ and perpendicular to the x′−axis. Since the above equations are linear, an

observer in S would see the plate tilted (but still flat) if there is a dependence on y′

or z′. However, this implies a “special direction” in space violating the assumption

of isotropy. Therefore, the coefficients a12 and a13 are 0. Similarly, isotropy implies

a42 = a43 = 0. We have reduced the system of equations to

x = a11x
′ + a14t

′ (85)

t = a41x
′ + a44t

′ (86)

Note. A beam of light is emitted from the origin of S′ at time t = t′ = 0 (when

x = x′ = 0), bounced off a mirror and reflected back to the S′ origin (x′ = 0) at

time t′ = ∆t′.

In S, the light returns to the origin (x′ = 0) at time t = ∆t = t′/
√

1 − β2 (equation

(78), page 123). Also, in S with x′ = 0 we have (from equation (86)) that t = a44t
′.

Therefore a44 = 1/
√

1 − β2. Next, with x′ = 0 and t = t′/
√

1 − β2, since the point

x′ = 0 occurs in the S frame at x = βt (due to the relative motion), we have from
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equation (85):

x = βt =
β

√

1 − β2
t′ = a14t

′

and so a14 =
β

√

1 − β2
. So equations (85) and (86) give

x = a11x
′ +

β
√

1 − β2
t′ (87)

t = a41x
′ +

1
√

1 − β2
t′ (88)

Note. Now consider a flash of light emitted at the origins of S and S′ at t = t′ = 0.

This produces a sphere of light in each frame (according to the constancy of the

speed of light). And so

t2 = x2 + y2 + z2

t′2 = x′2 + y′2 + z′2.

Since y = y′ and z = z′, we have t2 − x2 = t′2 − x′2. From equations (87) and (88)

we get

t2 − x2 =

(

a41x
′ +

1
√

1 − β2
t′

)2

−

(

a11x
′ +

β
√

1 − β2
t′

)2

= t′2 − x′2.

Expanding

(a41)
2x′2 +

(

2a41
√

1 − β2

)

x′t′ +
1

1 − β2
t′2 − (a11)

2x′2

−2
a11β

√

1 − β2
x′t′ −

β2

1 − β2
t′2 = t′2 − x′2

or

x′2(a2

41
− a2

11
) + x′t′

(

2a41
√

1 − β2
− 2

a11β
√

1 − β2

)
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+t′2
(

1

1 − β2
−

β

1 − β2

)

= t′2 − x′2.

Comparing coefficients, we need

a2

41 − a2

11 = −1

2
a41

√

1 − β2
− 2

a11β
√

1 − β2
= 0

or

a2

41
− a2

11
= −1 and a41 − βa11 = 0.

Solving this system: a41 = βa11 and so

a2

41
− a2

11
= (βa11)

2 − a2

11
= −1

or

a2

11
=

1

1 − β2
and a11 = ±

1
√

1 − β2
.

From equation (87) with β = 0 we see that x =
(

a11|β=0

)

x′ and we want x = x′

in the event that β = 0. Therefore, we have

a11 =
1

√

1 − β2
and a41 =

β
√

1 − β2
.

We now have the desired relations between (x, y, z, t) and (x′, y′, z′, t′).
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Definition. The transformation relating coordinates (x, y, z, t) in S to coordinates

(x′, y′, z′, t′) in S′ given by

x =
x′ + βt′
√

1 − β2

y = y′

z = z′

t =
βx′ + t′
√

1 − β2

is called the Lorentz Transformation.

Note. With β � 1 and β2 ≈ 0 we have

x = x′ + βt′

t = t′

(in geometric units, x and x′ are small compared to t and t′ [see page 117; remember

time gets multiplied by c to express it in units of length] and βx′ is negligible

compared to t′, but βt′ is NOT negligible compared to x′).

Note. By the Principle of Relativity, we can invert the Lorentz Transformation

simply by interchanging x and t with x′ and t′, respectively, and replacing β with

−β!
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Note. If we deal with pairs of events separated in space and time, we denote the

differences in coordinates with ∆’s to get

∆x =
∆x′ + β∆t′
√

1 − β2
(91a)

∆t =
β∆x′ + ∆t′
√

1 − β2
(91b)

With ∆x′ = 0 in (91b) we get the equation for time dilation. With a rod of length

L = ∆x in frame S, the length measured in S′ requires a simultaneous measurement

of the endpoints (∆t′ = 0) and so from (91a) L = L′/
√

1 − β2 or L′ = L
√

1 − β2,

the equation for length contraction.

Example (Exercise 2.7.2). Observer S′ seated at the center of a railroad car

observes two men, seated at opposite ends of the car, light cigarettes simultaneously

(∆t′ = 0). However for S, an observer on the station platform, these events are

not simultaneous (∆t 6= 0). If the length of the railroad car is ∆x′ = 25m and the

speed of the car relative to the platform is 20m/sec (β = 20/3 × 108), find ∆t and

convert your answer to seconds.

Solution. We have ∆t′ = 0, ∆x′ = 25m, and β = 20/3× 108 ≈ 6.67× 10−8. So by

equation (91b)

∆t =
β∆x′ + ∆t′
√

1 − β2
=

(6.67 × 10−8)(25m)
√

1 − (6.67 × 10−8)2
≈ 1.67 × 10−6m

or in seconds

∆t =
1.67 × 10−6m

3 × 108m/sec
= 5.56 × 10−15sec.
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Example (Exercise 2.7.14). Substitute the transformation Equation (91) into

the formula for the interval and verify that

(∆t)2 − (∆x)2 − (∆y)2 − (∆z)2 = (∆t′)2 − (∆x′)2 − (∆y′)2 − (∆z′)2.

Solution. With ∆y = ∆z = 0 we have

(∆t)2 −(∆x)2 − (∆y)2 − (∆z)2

= (∆t)2 − (∆x)2 =

(

β∆x′ + ∆t′
√

1 − β2

)2

−

(

∆x′ + β∆t′
√

1 − β2

)2

=
β2(∆x′)2 + 2β∆x′∆t′ + (∆t′)2 − (∆x′)2 − 2β∆x′∆t′ − β2(∆t′)2

1 − β2

=
(∆x′)2(β2 − 1) + (∆t′)2(1 − β2)

1 − β2

= (∆t′)2 − (∆x′)2 = (∆t′)2 − (∆x′)2 − (∆y′)2 − (∆z′)2

since ∆y′ = ∆z′ = 0.
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