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2.9 Lorentz Geometry

Note. We wish to extend the idea of arclength to 4-dimensional spacetime. We do

so by replacing the idea of “distance” (
√∑

(∆xi)2) by the interval. The resulting

geometry is called Lorentz geometry.

Definition. Let ~α be a curve in spacetime. The spacetime length (or proper time)

of ~α is

L(α) =

∫
α

dτ =

∫
α

√
(dt)2 − (dx)2 − (dy)2 − (dz)2.

Note. Since ∆τ (and so dτ) is an invariant from one inertial frame to another, then

so is L(α). L(α) may be viewed as the actual passage of time that would be recorded

for a clock with world-line ~α (this is certainly clear when dx = dy = dz = 0).

Definition. R4 with the semi-Riemannian metric

dτ 2 = (dt)2 − (dx)2 − (dy)2 − (dz)2 (93)

is called Minkowski space.

Note. It may seem a bit unusual to see (dτ)2 referred to as the “metric,” but of

course it does determine a way to measure the distance between points—although

the “distance” may be negative. In a tensor analysis setting, a metric tensor is a bi-

linear form which is non-degenerate (and may sometimes be “positive definite” and

sometimes “negative definite”; that is, we may sometimes get negative distances

from a metric tensor). For more details on this behavior, see my online notes based

on Dodson and Poston’s Tensor Geometry (Springer-Verlag, 1991)on Section IV.1.

Metrics.

http://faculty.etsu.edu/gardnerr/5310/notes-Dodson-Poston/Dodson-Poston-IV-1.pdf
http://faculty.etsu.edu/gardnerr/5310/notes-Dodson-Poston/Dodson-Poston-IV-1.pdf
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Note. We parameterized curves with respect to arclength in Chapter 1. It is

convenient to parameterize timelike curves (those curves for which (dτ/dt)2 > 0)

in terms of proper time.

Example. Suppose a free particle travels with constant speed and direction, so

that
dx

dt
= a,

dy

dt
= b,

dz

dt
= c

for constants a, b, c. Define β =
√

a2 + b2 + c2 (the particle’s speed). From equation

(93), (
dτ

dt

)2

= 1−
(

dx

dt

)2

−
(

dy

dt

)2

−
(

dz

dt

)2

= 1− β2.

Since dτ/dt is constant, τ is a monotone function of t and so dt/dτ = 1/
√

1− β2

(well ±)

dx

dτ
=

dx

dt

dt

dτ
=

a√
1− β2

dy

dτ
=

dy

dt

dt

dτ
=

b√
1− β2

dz

dτ
=

dz

dt

dt

dτ
=

c√
1− β2

.

Notice that each of these derivatives is constant and so the particle follows a straight

line in spacetime. If we calculate second derivatives, we see that a free particle

satisfies:
d2t

dτ 2 =
d2x

dτ 2 =
d2y

dτ 2 =
d2z

dτ 2 = 0.

In fact, free particles follow geodesics in the spacetime of special relativity (in which

geodesics are straight lines).
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