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3.8 The Schwarzschild Solution

Note. In this section, we consider the first analytic solution to the field equa-

tions. Surprisingly, the solution was given in a paper submitted January 13,

1916! This is work of Karl Schwarzschild, who quotes Einstein’s presentation of

November 18, 1915 to the Prussian Academy as having posed the problem. So

Schwarzschild has figured this out and written it up in under 2 months! The solu-

tion appears as “On the Gravitational Field of a Mass Point according to Einsteins

Theory” Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften

zu Berlin, Phys.-Math. Klasse (1916), 189–196. An English translation is available

online at: arxiv.org/pdf/physics/9905030v1.pdf.

Note. Karl Schwarzschild (1873-1916) earned his doctorate at the University of

Munich in the 1890s. From 1901 to 1909 he was a professor at Göttingen where

he interacted with Felix Klein, David Hilbert, and Hermann Minkowski. When

hostilities broke out in August 1914, at the start of World War I, Schwarzschild

volunteered for military service in the German army. He was stationed in Belgium

(where he ran a weather station), France (where he did computations for artillery

and missile trajectories), and Russia. In Russia, he wrote two papers on Einstein’s
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relativity and one paper on quantum theory! Sadly, he also contracted an autoim-

mmune disease of the skin while in Russia. He returned home in March 1916 and

died on May 11, 1916. Schwarzschild had sent a copy of his paper on a solution

to the field equations to Einstein who replied “I had not expected that one could

formulate the exact solution of the problem in such a simple way.” This informa-

tion (and the photo above) is from the MacTutor History of Mathematics archive

at: www-history.mcs.st-andrews.ac.uk/Biographies/Schwarzschild.html.

Note. In this section, we solve Einstein’s field equations for the gravitational field

outside an isolated sphere of mass M assumed to be at rest at the (spatial) origin

of our coordinate system.

Note. We convert to spherical coordinates ρ, ϕ, θ:

x = ρ sin ϕ cos θ

y = ρ sin ϕ sin θ

z = ρ cos ϕ.

In the event of flat spacetime, we have the Lorentz metric (as is shown in Exercise

3.8.1):

dτ 2 = dt2 − dx2 − dy2 − dz2

= dt2 − dρ2 − ρ2dϕ2 − ρ2 sin2 ϕdθ2. (144)

Note. As the book says, “the derivation that follows is not entirely rigorous, but

it does not have to be - as long as the resulting metric form is a solution to the

field equations.”
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Note. We have a static gravitational field (i.e. independent of time) and it is

spherically symmetric (i.e. independent of ϕ and θ) so we look for a metric form

satisfying

dτ 2 = U(ρ)dt2 − V (ρ)dρ2 − W (ρ)(ρ2dϕ2 + ρ2 sin2 ϕdθ2) (145)

where U, V,W are functions of ρ only. Let r = ρ
√

W (ρ) then (145) becomes

dτ 2 = A(r)dt2 − B(r)dr2 − r2dϕ2 − r2 sin2 ϕdθ2 (146)

for some A(r) and B(r). Next define functions m = m(r) and n = n(r) where

A(r) = e2m(r) = e2m and B(r) = e2n(r) = e2n.

Then (146) becomes

dτ 2 = e2mdt2 − e2ndr2 − r2dϕ2 − r2 sin2 ϕdθ2. (147)

Since dτ 2 = gµνdxµdxν in general, if we label x0 = t, x1 = r, x2 = ϕ, x3 = θ we

have

(gµν) =















e2m 0 0 0

0 −e2n 0 0

0 0 −r2 0

0 0 0 −r2 sin2 ϕ















and g = det(gij) = −e2m+2nr4 sin2 ϕ. If we find m(r) and n(r), we will have a

solution!

Note. We need the Christoffel symbols

Γλ
µν =

1

2
gλβ

(

∂gµβ

∂xν
+

∂gνβ

∂xµ
−

∂gµν

∂xβ

)

. (126)

Since gµν = 0 for µ 6= ν, we have gµµ = 1/gµµ and gµν = 0 if µ 6= ν. So the

coefficient gλβ is 0 unless β = λ and we have

Γλ
µν =

1

2gλλ

(

∂gµλ

∂xν
+

∂gνλ

∂xµ
−

∂gµν

∂xλ

)

.
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We need to consider three cases:

Case 1. For λ = ν:

Γν
µν =

1

2gνν

(

∂gµν

∂xν
+

∂gνν

∂xµ
−

∂gµν

∂xν

)

=
1

2gνν

(

∂gνν

∂xµ

)

=
1

2

∂

∂xµ
[ln(gνν)]

Case 2. For µ = ν 6= λ:

Γλ
µµ =

1

2gλλ

(

∂gµλ

∂xµ
+

∂gµλ

∂xµ
−

∂gµµ

∂xλ

)

=
−1

2gλλ

(

∂gµµ

∂xλ

)

since gµλ = 0 in this case.

Case 3. For µ, ν, λ distinct: Γλ
µν = 0 since gµλ = gνλ = gµν = 0 in this case.

Note. With the gµν’s given above (in terms of m,n, r and ϕ) we can calculate the

nonzero Christoffel symbols to be:

Γ0
10 = Γ0

01 = m′ Γ1
00 = m′e2m−2n

Γ1
11 = n′ Γ1

22 = −re−2n

Γ2
12 = Γ2

21 = 1
r Γ1

33 = −re−2n sin2 ϕ

Γ3
13 = Γ3

31 = 1
r Γ3

23 = Γ3
32 = cot ϕ

Γ2
33 = − sin ϕ cos ϕ

where ′ = d/dr.

Note. We have

ln |g|1/2 =
1

2
ln(e2m+2nr4 sin2 ϕ) = m + n + 2 ln r + ln(sin ϕ).
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We saw in Lemma III-4 that

gλβ ∂gλβ

∂xµ
=

1

g

∂g

∂xµ
=

∂

∂xµ
[ln |g|].

Now
∂

∂xβ
[ln |g|1/2] =

1

2

∂

∂xβ
[ln |g|] =

1

2
gλµ∂gλµ

∂xβ
=

1

2
gλλ∂gλλ

∂xβ
.

Also, from (126)

Γλ
µν =

1

2
gλβ

(

∂gµβ

∂xν
+

∂gνβ

∂xµ
−

∂gµν

∂xβ

)

we have with µ = β, ν = λ and δ the dummy variable:

Γλ
βλ =

1

2
gλδ

(

∂gβδ

∂xλ
+

∂gλδ

∂xβ
−

∂gβλ

∂xδ

)

=
1

2
gλλ

(

∂gβλ

∂xλ
+

∂gλλ

∂xβ
−

∂gβλ

∂xλ

)

=
1

2
gλλ

(

∂gλλ

∂xβ

)

.

Therefore we have
∂

∂xβ
[ln |g|1/2] = Γλ

βλ.

Similarly
∂

∂xµ
[ln |g|1/2] = Γλ

µλ. Therefore the field equations imply

Rµν =
∂2

∂xµ∂xν
[ln |g|1/2] −

∂Γλ
µν

∂xλ
+ Γβ

µλΓ
λ
νβ − Γβ

µν

∂

∂xβ
[ln |g|1/2] = 0.

Note. We find that

R00 =

(

−m′′ + m′n′ − m′2 −
2m′

r

)

e2m−2n

R11 = m′′ − m′n′ + m′2 −
2n′

r
R22 = e−2n(1 + rm′ − rn′) − 1

R33 = R22 sin2 ϕ
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All other Rµν are identically zero. Next, the field equations say that we need each

of these to be zero. Therefore we need:
(

−m′′ + m′n′ − m′2 −
2m′

r

)

= 0

m′′ − m′n′ + m′2 −
2n′

r
= 0

e−2n(1 + rm′ − rn′) − 1 = 0

R22 sin2 ϕ = 0

Adding the first two of these equations, we find that m′+n′ = 0, and so m+n = b,

a constant. However, by the boundary conditions both m and n must vanish as

r → ∞, since the metric (147) must approach the Lorentz metric at great distances

from the mass M (compare (147) and (144)). Therefore, b = 0 and n = −m The

third equation implies:

1 = (1 + 2rm′)e2m = (re2m)′.

Hence we have re2m = r + C for some constant C, or g00 = e2m = 1 + C/r. But

as commented in the previous section, we need g00 = 1 − 2M/r where the field is

weak. We therefore have C = −2M . Hence we have the solution:

dτ 2 =

(

1 −
2M

r

)

dt2 −

(

1 −
2M

r

)−1

dr2 − r2dϕ2 − r2 sin2 ϕdθ2.

Note. Notice that this solution has two singularities. One at the center of the

mass, r = 0, and another at r = 2M . This second singularity will correspond to

the event horizon when we address black holes. Also, we have r = ρ and W (ρ) = 1.
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