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3.9 Orbits in General Relativity

Note. We now use some approximations to show the precession of the orbit of

Mercury, mentioned in Section 3.3 and explicitly shown in Einstein’s 1916 paper

on general relativity. This result provided the first empirical evidence in support

of the theory. Since this involves geodesics around a massive object at the (spatial)

origin, me will be considering geodesic under the “Schwarzschild metric” of the

previous section.

Note. We start with the Schwarzschild metric

dτ 2 =

(

1 −
2M

r

)

dt2 −

(

1 −
2M

r

)−1

dr2
− r2 dϕ2

− r2 sin2 ϕdθ2

and describe the path of a planet by a timelike geodesic

(x0(τ), x1(τ), x2(τ), x3(τ))

where
d2xλ

dτ 2
+ Γλ

µν

dxµ

dτ

dxν

dτ
= 0

for λ = 0, 1, 2, 3. As in the previous section, we take x0 = t, x1 = r, x2 = ϕ, and

x3 = θ. The resulting Christoffel symbols are given in equation (153), page 214.

Note. With λ = 2 we have from the geodesic condition

d2x2

dτ 2
+ Γ2

µν

dxµ

dτ

dxν

dτ
= 0

and since the only nonzero Γ’s with a superscript of 2 are Γ2

12
, Γ2

21
, and Γ2

33
we have

d2x2

dτ 2
+ Γ2

12

dx1

dτ

dx2

dτ
+ Γ2

21

dx2

dτ

dx1

dτ
+ Γ2

33

dx3

dτ

dx3

dτ
= 0
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or
d2ϕ

dτ 2
+ 2

(

1

r

dr

dτ

dϕ

dτ

)

+ (− sin ϕ cos ϕ)

(

dθ

dτ

)2

= 0.

We orient our axes such that when τ = 0, we have ϕ = π/2 and dϕ/dτ = 0. So the

planet starts in the plane ϕ = π/2 and due to symmetry remains in this plane. So

we henceforth take ϕ = π/2. Now with λ = 0:

d2x0

dτ 2
+ Γ0

µν

dxµ

dτ

dxν

dτ
= 0

and since the only nonzero Γ’s with a superscript of 0 are Γ0
10 and Γ0

01, we have

d2x0

dτ 2
+ Γ0

10

dx1

dτ

dx0

dτ
+ Γ0

01

dx0

dτ

dx1

dτ
= 0

or
d2t

dτ 2
+ 2

(

m′
dr

dτ

dt

dτ

)

= 0. (159a)

With λ = 1:
d2x1

dτ 2
+ Γ1

µν

dxµ

dτ

dxν

dτ
= 0

and since the only nonzero Γ’s with a superscript of 1 are Γ1

00
, Γ1

11
, Γ1

22
, and Γ1

33
,

we have

d2x1

dτ 2
+ Γ1

00

dx0

dτ

dx0

dτ
+ Γ1

11

dx1

dτ

dx1

dτ
+ Γ1

22

dx2

dτ

dx2

dτ
+ Γ1

33

dx3

dτ

dx3

dτ
= 0

or
d2r

dτ 2
+ m′e2m−2n

(

dt

dτ

)2

+ n′

(

dr

dτ

)2

+(−re−2n)

(

dϕ

dτ

)2

+ (−re−2n sin2 ϕ)

(

dθ

dτ

)2

= 0. (159b)

(since we have ϕ = π/2, sin2 ϕ ≡ 1). With λ = 3

d2x3

dτ 2
+ Γ3

µν

dxµ

dτ

dxν

dτ
= 0
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and since the only nonzero Γ’s with a superscript of 3 are Γ3
13

, Γ3
31

, Γ3
23

, and Γ3
32

,

we have

d2x3

dτ 2
+ Γ3

13

dx1

dτ

dx3

dτ
+ Γ3

31

dx3

dτ

dx1

dτ
+ Γ3

23

dx2

dτ

dx3

dτ
+ Γ3

32

dx3

dτ

dx2

dτ
= 0

or
d2θ

dτ 2
+ 2

(

1

r

dr

dτ

dθ

dτ

)

+ 2

(

cot ϕ
dϕ

dτ

dθ

dτ

)

= 0

or since ϕ = π/2

d2θ

dτ 2
+ 2

(

1

r

dr

dτ

dθ

dτ

)

= 0. (159c)

Note. Now by the Chain Rule m′
dr

dτ
=

dm

dr

dr

dτ
=

dm

dτ
, and dividing (159a) by

dt/dτ gives
d2t/dτ 2

dt/dτ
+ 2

(

m′
dr

dτ

)

= 0

or
d

dτ

[

ln
dt

dτ

]

= −2
dm

dτ
.

Integration yields

ln

(

dt

dτ

)

= −2m + constant

or
dt

dτ
= be−2m =

b

γ
(160)

where b is some positive constant and we define γ = e2m.

Note. Equation (159c) can be integrated (see page 63 for the process) to yield

r2
dθ

dτ
= h (161)

where h is a positive constant.
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Note. From the Schwarzschild metric with ϕ = π/2, dϕ = 0, and γ = e2m =

1 − 2M/r we have

dτ 2 = γdt2 − γ−1dr2
− r2dθ2

or

1 = γ

(

dt

dτ

)2

− γ−1

(

dr

dτ

)2

− r2

(

dθ

dτ

)2

= γ

(

b

γ

)2

− γ−1

(

dr

dθ

h

r2

)2

− r2

(

h

r2

)2

(162)

by equation (160), the fact that

dr

dτ
=

dr

dθ

dθ

dτ
=

dr

dθ

h

r2

(by the Chain Rule and equation (161)) and by equation (161). Multiplying (162)

by γ yields

γ = b2
−

(

dr

dθ

h

r2

)2

− γ
h2

r2

or since γ = 1 − 2M/r:

(

1 −
2M

r

)

= b2
−

(

h

r2

)2 (

dr

dθ

)2

−

(

1 −
2M

r

)

h2

r2

or
(

h

r2

dr

dθ

)2

+
h2

r2
= b2

− 1 +
2M

r
+

2M

r

h2

r2
.

Let u = 1/r so that
du

dθ
= −

1

r2

dr

dθ
and the previous equation yields

(

1

r2

dr

dθ

)2

+
1

r2
=

b2
− 1

h2
+

2M

rh2
+

2M

r3

or
(

du

dθ

)2

+ u2 =
b2 − 1

h2
+

2Mu

h2
+ 2Mu3.
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Differentiation with respect to θ yields

2
du

dθ

d2u

dθ2
+ 2u

du

dθ
=

2M

h2

du

dθ
+ 6Mu2

du

dθ
(b and h are constants)

or
d2u

dθ2
+ u =

M

h2
+ 3Mu2 (163)

where u = 1/r and h = r2dθ/dτ (constant).

Note. A similar analysis in the Newtonian setting yields

d2u

dθ2
+ u =

M

h2
(114)

(see page 193). So the only difference is the 3Mu2 term in (163) and we can think

of this as the “relativistic term.” Equation (114) has solution

u =
M

h2
(1 + e cos θ).

Note. We can view (163) as a linear ODE (considering the left hand side) set

equal to a nonhomogeneous term
M

h2
+ 3Mu2. Now the term 3Mu2 is “small” as

compared to M/h2 (see page 226). We perturb this equation by replacing u with

the approximate solution M/h2(1 + e cos θ) on the right hand side of (163) and

consider
d2u

dθ2
+ u =

M

h2
+ 3M

(

M

h2
(1 + e cos θ)

)2

=
M

h2
+

3M 3

h4
(1 + 2e cos θ + e2 cos2 θ).

A solution to this (linear) ODE will then be an approximate solution to (163). The

ODE is

d2u

dθ2
+ u =

M

h2
+

3M 3

h4
+

6M 3e

h4
cos θ +

3M 3e2

2h4
+

3M 3e2

2h4
cos(2θ). (165)
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(The last two terms follow from the fact that cos2 θ = (1 + cos(2θ))/2.)

Lemma III-5. Let A ∈ R. Then

1. u = A is a solution of d2u/dθ2 + u = A.

2. u = (A/2)θ sin θ is a solution of d2u/dθ2 + u = A cos θ.

3. u = (−A/3) cos(2θ) is a solution of d2u/dθ2 + u = A cos(2θ).

(The proof follows by simply differentiating.)

Note. Equation (165) is

d2u

dθ2
+ u =

(

M

h2
+

3M 3

h4
+

3M 3e2

2h4

)

+

(

6M 3e

h4
cos θ

)

+

(

3M 3e2

2h4
cos(2θ)

)

and by Lemma III-5

up =

(

M

h2
+

3M 3

h4
+

3M 3e2

2h4

)

+

(

3M 3e

h4
θ sin θ

)

+

(

−M 3e2

2h4
cos(2θ)

)

=
M

h2

[

1 +
3M 2

h2

(

1 +
e2

2

)

+
3M 2e

h2
θ sin θ −

M 2e2

2h2
cos(2θ)

]

is a (particular) solution to (165). Now the general solution to the homogeneous

ODE
d2u

dθ2
+ u = 0

is a linear combination of uh = sin θ and uh = cos θ. Therefore, we can add any

linear combination of these functions to the above particular solution to get another

solution. We choose to add
M

h2
e cos θ (for reasons to be discussed shortly; we want

to compare this solution to the Newtonian solution). We have

u =
M

h2

[

1 +
3M 2

h2

(

1 +
e2

2

)

+ e cos θ +
3M 2e

h2
θ sin θ −

M 2e2

2h2
cos(2θ)

]
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Note. The term
3M 2

h2

(

1 +
e2

2

)

is small compared to 1 (8× 10−8 for Mercury, see

page 227). If we let

α = 1 +
3M 2

h2

(

1 +
e2

2

)

and define e′ = e/α then

Mα

h2
(1 + e′ cos θ) =

M

h2
(α + e cos θ) =

M

h2

(

1 +
3M 2

h2

(

1 +
e2

2

)

+ e cos θ

)

.

Since α ≈ 1, e′ ≈ e and we see that this part of the u function is approximately

the same as the Newtonian solution. A similar argument shows that the “cos(2θ)”

term causes little deviation from the Newtonian solution. Therefore we have that

u ≈
M

h2

(

1 + e cos θ +
3M 2e

h2
θ sin θ

)

.

Although the “θ sin θ” may be very small initially, as θ increases “the term will

have a cumulative effect over many revolutions” (see page 228). This effect is the

observed perihelial advance.

Note. Since M 2/h2 is small (≈ 10−8 for Mercury, see page 228) we approximate

cos

(

3M 2θ

h2

)

≈ 1, sin

(

3M 2θ

h2

)

≈
3M 2θ

h2

and we get

M

h2

{

1 + e cos

(

θ −
3M 2

h2
θ

)}

=
M

h2

{

1 + e

(

cos θ cos

(

3M 2

h2
θ

)

+ sin θ sin

(

3M 2

h2
θ

))}

≈
M

h2

{

1 + e cos θ + e
3M 2

h2
θ sin θ

}

≈ u.
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So u has a maximum (and r = 1/u has a minimum; i.e., we are at perihelion) when

cos

(

θ −
3M 2

h2
θ

)

is at a maximum. This occurs for θ = 0 and

θ =
2π

1 − 3M 2/h2
≈ 2π

(

1 +
3M 2

h2

)

(since (1− x)−1 ≈ 1 + x for x ≈ 0). So the perihelion advances (in the direction of

the orbital motion) by an amount 6πM 2/h2 per revolution.

Note. If we want the orbital precession per (Earth) century, we have

∆θcent = n∆θ =
6πM 2n

h2
=

6πMn

a(1 − e2)
(radians)

(since h2/M = a(1 − e2) see page 195) where n is the number of orbits of the Sun

that a planet makes per century.

Note. Table III-2 (reproduced below) gives the calculated precessions as observed

and as predicted for 4 solar system objects. The last two columns represent pre-

cessions measured in seconds per century:

Planet a(÷1011cm) e n General Relativity Observed

Mercury 57.91 0.2056 415 43.03′′ 43.11′′ ± 0.45′′

Venus 108.21 0.0068 149 8.6′′ 8.4′′ ± 4.8′′

Earth 149.60 0.0167 100 3.8′′ 5.0′′ ± 1.2′′

Icarus 161.0 0.827 89 10.3′′ 9.8′′ ± 0.8′′
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