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3.9 Orbits in General Relativity

Note. We now use some approximations to show the precession of the orbit of
Mercury, mentioned in Section 3.3 and explicitly shown in Einstein’s 1916 paper
on general relativity. This result provided the first empirical evidence in support
of the theory. Since this involves geodesics around a massive object at the (spatial)
origin, me will be considering geodesic under the “Schwarzschild metric” of the

previous section.

Note. We start with the Schwarzschild metric

oM oM\
dr? = (1 — —) dt* — (1 — —) dr® — r? d® — r?sin’ @ db”

r r

and describe the path of a planet by a timelike geodesic

(2°(7), 2" (1), 2*(7),2°(1))

where
d? \ ﬂdaz”
dr? " dr dr

for A = 0,1,2,3. As in the previous section, we take 2° = ¢, 2! = r, 22 = ¢, and

=0

23 = 0. The resulting Christoffel symbols are given in equation (153), page 214.

Note. With A = 2 we have from the geodesic condition

d?z? o dzt dx”

dr? wodr dr

and since the only nonzero I'’s with a superscript of 2 are I'},, I'3;, and I'%; we have

A2 dx! da? dx? dxt dx3 da?
T, | e, | i, | S ————
dr? T dr drt tha dr dr + s dr drt
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d*p ldrdy db
¥ o (258 4 (- = 0.
dr? + (TdT d7'> + (= sinpcosp) (dT) 0

We orient our axes such that when 7 = 0, we have ¢ = 7/2 and dp/dr = 0. So the

or

planet starts in the plane ¢ = 7/2 and due to symmetry remains in this plane. So
we henceforth take ¢ = 7/2. Now with A = 0:

d?z° o dat dx”

@z e Y

and since the only nonzero I'’s with a superscript of 0 are I'Y, and I');, we have

a0 dxt da’ dz® dat
+ 1Y [ ——=0
P U i
or ,
d“t dr dt
oo (m ) =o. 1
72 + (m o dT) 0 (159a)
With \ = 1:
d?z! | dxt dz”

A

and since the only nonzero I'’s with a superscript of 1 are T}, I'l;, ', and T,

we have
d? ! dz® dz° dxt do! dx? dz? dx3 da?
+ Tl + T + T + Tl =0
dr2 % ar T Wy dr U 2dr dr | ¥dr dr
or , )
d=r ) om_on [ At , [ dr
dr? e (dT) o dr

+(—re ) (fl—f>Z+ (—re 2" sin® @) (jﬁ) = 0. (159b)

(since we have ¢ = 7/2, sin? o = 1). With A = 3

d?x? L da’ da”
dr? "odr dr
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and since the only nonzero I'’s with a superscript of 3 are ['}5, T'3;, I's;, and T's,,

we have
A3 dxt da3 dx? dat dxz? da3 da3 dax?
+13 + 13 + 13 + 13 =0
drz O Bdr dr O %dr dr T Bdr dr 0 %%dr dr
or ,
d=0 1dr db dy df
— + 2 ——— 2 to—— | =0
dr? + (TdeT) + (CO gOah' dT)

or since ¢ = /2

20 1dr df
G792 1
dr? + (T dr dT) 0 (159¢)

d dm d d
Note. Now by the Chain Rule m/ Gl —m, and dividing (159a) by

dr dr dr dr
dt/dr gives
2 2

dt/dr dr
or
d dt dm

Integration yields

dr
or
dt b
— =be " = — 160
dr c v (160)

where b is some positive constant and we define v = ™.

Note. Equation (159¢) can be integrated (see page 63 for the process) to yield

d«9

= 161
dT =h (161)

where h is a positive constant.
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2m __

Note. From the Schwarzschild metric with ¢ = 7/2, dp = 0, and v = e*™ =
1 —2M/r we have
dr® = ~vdt? — v Ldr? — r?dp?

dt\* dr\ > do\ >
1 = et P O e 2
b\°>  _ (drh\> L[ h)’
A (2) (Y 2 162
'V(fy> ! (W) ' () 12

by equation (160), the fact that

dr_drds _drh
dr  dfdr  dfr?
(by the Chain Rule and equation (161)) and by equation (161). Multiplying (162)

by v yields
dr h\>  h?
—p2 (2 A
v="0 (d0T2> i
or since vy =1 —2M/r:

(-2 (2) (5) - -2

or

or
hdr\® h* oM 2M h?
—— — =0 -1+ —+——.
r2 do 72 r ror?
d 1d
Let u = 1/r so that d—z = _ﬁd_g and the previous equation yields

r2 |2 +Th2+ r3

Ldr\> 1 -1 2M 2M
r2 df

or

du\®> , ¥ -1 2Mu ;
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Differentiation with respect to 6 yields

du d*u du  2M du du
0 ou— = 6 Mut—
T + U = 25 +6Mu 7 (b and h are constants)

or

d*u M 9
W+u=ﬁ+3Mu (163)
where u = 1/r and h = r?df/dr (constant).

Note. A similar analysis in the Newtonian setting yields
d*u M
w +u = ﬁ (114)
(see page 193). So the only difference is the 3Mwu? term in (163) and we can think

of this as the “relativistic term.” Equation (114) has solution

u 1+ ecos?).

:ﬁ(

Note. We can view (163) as a linear ODE (considering the left hand side) set
equal to a nonhomogeneous term 72 + 3Mu?. Now the term 3Mu? is “small” as
compared to M /h? (see page 226). We perturb this equation by replacing u with
the approximate solution M /h?(1 + ecos®) on the right hand side of (163) and

consider , 9
d*u M M
— Loy = 73 +3M (ﬁ(l +ecos«9)>
M 3M°
= ﬁ+?(1+2@cos«9+ezcoszﬁ).

A solution to this (linear) ODE will then be an approximate solution to (163). The
ODE is
d*u M  3M?  6M?3e 3M3e*  3M3e?

=ttt cos 6 + 5 T o cos(26). (165)
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(The last two terms follow from the fact that cos? 6 = (1 + cos(20))/2.)

Lemma ITI-5. Let A € R. Then

1. u = A is a solution of d?u/df* + u = A.

2. u = (A/2)0sind is a solution of d?u/df* +u = Acos¥.

3. u=(—A/3)cos(20) is a solution of d*u/df* +u = Acos(20).

(The proof follows by simply differentiating.)

Note. Equation (165) is

d*u M 3M3  3M3e? 6M3e 3M3e?
— tu=|-—+ + + cosf | + cos(26)

db? h? h? 2h? h? 2h?
and by Lemma III-5

M 3M3  3M3e? 3M3e —M3e?
U, = ﬁ—f— 7 + T + 7 Osinf | + T cos(26)

M 3M? e? 3M?%e | M?2e?
=3 [1+7(1+5>+ 73 0sin — 57 cos(2«9)]

is a (particular) solution to (165). Now the general solution to the homogeneous
ODE

% +u=0
is a linear combination of uw;, = sinf and u, = cosf. Therefore, we can add any
linear combination of these functions to the above particular solution to get another
solution. We choose to add 7€ o8 0 (for reasons to be discussed shortly; we want
to compare this solution to the Newtonian solution). We have
:% [1+3—]\42 (1+6—2> +ecosl +
h? h? 2

M?3e M?32e?

72 fsin f — 572

u cos(26)
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3M2 2
Note. The term —— (1 + %) is small compared to 1 (8 x 107® for Mercury, see

12
page 227). If we let
a=1+ B—W (1 + 6—2>
h? 2

and define ¢/ = e/« then

Ma M M 3M? e?

?(1 + € cos ) = ﬁ(omtecosﬁ) =13 (1+ 7 (1 + 5) +ecos«9> :
Since a =~ 1, ¢/ ~ e and we see that this part of the u function is approximately
the same as the Newtonian solution. A similar argument shows that the “cos(26)”

term causes little deviation from the Newtonian solution. Therefore we have that

M 3M?
U~ 73 (1+ecos«9+ e 6«98111«9) )

Although the “Osin” may be very small initially, as 6 increases “the term will
have a cumulative effect over many revolutions” (see page 228). This effect is the

observed perihelial advance.

Note. Since M?/h? is small (= 10~ for Mercury, see page 228) we approximate

3M?0 N . (3M?0 N3M2«9
cos e ~ 1, sin e e

and we get

M 3M? M 3M?
72 {1+ecos («9— 7«9)} = 72 {1 +e (cosﬁcos (7«9>
2
-+ sin @ sin (%«9))}

M 3M?
— {1+ecos«9+e 72 Hsinﬁ} ~ U.

Q

h2
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So u has a maximum (and r = 1 /v has a minimum; i.e., we are at perihelion) when

3M? \ . . .
cos | 0 — ——0 | is at a maximum. This occurs for # = 0 and

h2
2T 3M?
— ~2m 1+ —
= T ”( - h2>

(since (1 —x)~! = 1+ for z &~ 0). So the perihelion advances (in the direction of

the orbital motion) by an amount 67M?/h? per revolution.

Note. If we want the orbital precession per (Earth) century, we have

6w M>*n 6mMn ,
Abcent = nAO = T = 1= (radians)

(since h?/M = a(1 — €?) see page 195) where n is the number of orbits of the Sun

that a planet makes per century.

Note. Table III-2 (reproduced below) gives the calculated precessions as observed
and as predicted for 4 solar system objects. The last two columns represent pre-

cessions measured in seconds per century:

Planet | a(<+10"cm) e n | General Relativity |  Observed
Mercury 57.91 0.2056 | 415 43.03" 43.11" +0.45"
Venus 108.21 0.0068 | 149 8.6" 8.4" +4.8"
Barth 149.60 0.0167 | 100 3.8" 5.0 +1.2"
Icarus 161.0 0.827 | 89 10.3” 9.8"+0.8"
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