Differential Geometry

Chapter II. Affine Spaces

II.1. Spaces—Proofs of Theorems

Table of contents

(1) Lemma II.1.A
(2) Lemma II.1.05
(3) Lemma II.1.06

Lemma II.1.A

Lemma II.1.A. In an affine space with difference function \mathbf{d} we have
(a) $\mathbf{d}(\mathbf{x}, \mathbf{x})=\mathbf{0}$ for all $\mathbf{x} \in X$, and
(b) $\mathbf{d}(\mathbf{x}, \mathbf{y})=-\mathbf{d}(\mathbf{y}, \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in X$.

Proof. (a) Let $x \in X$. Then by Definition II.1.01 (A i) with $\mathbf{x}=\mathbf{y}=\mathbf{z}$ we have $\mathbf{d}(\mathbf{x}, \mathbf{x})+\mathbf{d}(\mathbf{x}, \mathbf{x})=\mathbf{d}(\mathbf{x}, \mathbf{x})$, or $\mathbf{d}(\mathbf{x}, \mathbf{x})=\mathbf{0}$, as claimed.

Lemma II.1.A

Lemma II.1.A. In an affine space with difference function \mathbf{d} we have
(a) $\mathbf{d}(\mathbf{x}, \mathbf{x})=\mathbf{0}$ for all $\mathbf{x} \in X$, and
(b) $\mathbf{d}(\mathbf{x}, \mathbf{y})=-\mathbf{d}(\mathbf{y}, \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in X$.

Proof. (a) Let $\mathbf{x} \in X$. Then by Definition II.1.01 (A i) with $\mathbf{x}=\mathbf{y}=\mathbf{z}$ we have $\mathbf{d}(\mathbf{x}, \mathbf{x})+\mathbf{d}(\mathbf{x}, \mathbf{x})=\mathbf{d}(\mathbf{x}, \mathbf{x})$, or $\mathbf{d}(\mathbf{x}, \mathbf{x})=\mathbf{0}$, as claimed.
(b) Let $\mathbf{x}, \mathrm{y} \in X$. Then by Definition II.1.02 (A i) with $\mathrm{z}=\mathrm{x}$ we have $\mathbf{d}(\mathbf{x}, \mathbf{y})+\mathbf{d}(\mathbf{y}, \mathbf{x})=\mathbf{d}(\mathbf{x}, \mathbf{x})$ and so by part (a), $\mathbf{d}(\mathbf{x}, \mathbf{y})+\mathbf{d}(\mathbf{y}, \mathbf{x})=\mathbf{0}$ or $\mathbf{d}(\mathbf{x}, \mathbf{y})=-\mathbf{d}(\mathbf{y}, \mathbf{x})$, as claimed.

Lemma II.1.A

Lemma II.1.A. In an affine space with difference function \mathbf{d} we have
(a) $\mathbf{d}(\mathbf{x}, \mathbf{x})=\mathbf{0}$ for all $\mathbf{x} \in X$, and
(b) $\mathbf{d}(\mathbf{x}, \mathbf{y})=-\mathbf{d}(\mathbf{y}, \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in X$.

Proof. (a) Let $\mathbf{x} \in X$. Then by Definition II.1.01 (A i) with $\mathbf{x}=\mathbf{y}=\mathbf{z}$ we have $\mathbf{d}(\mathbf{x}, \mathbf{x})+\mathbf{d}(\mathbf{x}, \mathbf{x})=\mathbf{d}(\mathbf{x}, \mathbf{x})$, or $\mathbf{d}(\mathbf{x}, \mathbf{x})=\mathbf{0}$, as claimed.
(b) Let $\mathbf{x}, \mathbf{y} \in X$. Then by Definition II.1.02 (A i) with $\mathbf{z}=\mathbf{x}$ we have $\mathbf{d}(\mathbf{x}, \mathbf{y})+\mathbf{d}(\mathbf{y}, \mathbf{x})=\mathbf{d}(\mathbf{x}, \mathbf{x})$ and so by part (a), $\mathbf{d}(\mathbf{x}, \mathbf{y})+\mathbf{d}(\mathbf{y}, \mathbf{x})=\mathbf{0}$ or $\mathbf{d}(\mathbf{x}, \mathbf{y})=-\mathbf{d}(\mathbf{y}, \mathbf{x})$, as claimed.

Lemma II.1.05

Lemma II.1.05. Two affine subspaces X^{\prime} and $X^{\prime \prime}$ of X are parallel if and only if $X^{\prime \prime}=X^{\prime}+\mathbf{t}$ for some $\mathbf{t} \in T$.

Proof. (1) Suppose X^{\prime} and $X^{\prime \prime}$ are parallel. Let $x^{\prime} \in X^{\prime}$ and $x^{\prime \prime} \in X^{\prime \prime}$ be fixed.

Lemma II.1.05

Lemma II.1.05. Two affine subspaces X^{\prime} and $X^{\prime \prime}$ of X are parallel if and only if $X^{\prime \prime}=X^{\prime}+\mathbf{t}$ for some $\mathbf{t} \in T$.

Proof. (1) Suppose X^{\prime} and $X^{\prime \prime}$ are parallel. Let $x^{\prime} \in X^{\prime}$ and $x^{\prime \prime} \in X^{\prime \prime}$ be fixed.

Suppose $y^{\prime \prime} \in X^{\prime \prime}$. Set $\mathbf{t}=\mathrm{d}\left(x^{\prime}, x^{\prime \prime}\right)$. Then $\mathrm{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathrm{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ and so $\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime}, X^{\prime}\right)$ since $\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)=\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ because X^{\prime} and $X^{\prime \prime}$ are parallel by hypothesis. Since $x^{\prime}, x^{\prime \prime}, y^{\prime \prime} \in X$ then by Definition II.1.01 (A i) $\mathbf{d}\left(x^{\prime}, y^{\prime \prime}\right)=\mathrm{d}\left(x^{\prime}, x^{\prime \prime}\right)+\mathrm{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)$.

Lemma II.1.05

Lemma II.1.05. Two affine subspaces X^{\prime} and $X^{\prime \prime}$ of X are parallel if and only if $X^{\prime \prime}=X^{\prime}+\mathbf{t}$ for some $\mathbf{t} \in T$.

Proof. (1) Suppose X^{\prime} and $X^{\prime \prime}$ are parallel. Let $x^{\prime} \in X^{\prime}$ and $x^{\prime \prime} \in X^{\prime \prime}$ be fixed.

Suppose $y^{\prime \prime} \in X^{\prime \prime}$. Set $\mathbf{t}=\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)$. Then $\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ and so $\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime}, X^{\prime}\right)$ since $\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)=\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ because X^{\prime} and $X^{\prime \prime}$ are parallel by hypothesis. Since $x^{\prime}, x^{\prime \prime}, y^{\prime \prime} \in X$ then by Definition II.1.01 (A i) $\mathbf{d}\left(x^{\prime}, y^{\prime \prime}\right)=\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)+\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)$. We have set
$\mathrm{t}=\mathrm{d}\left(x^{\prime}, x^{\prime \prime}\right) \in T$ and we have $\mathrm{s}=\mathrm{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathrm{d}\left(X^{\prime} \times X^{\prime}\right)$, so $\mathbf{d}\left(x^{\prime}, y^{\prime \prime}\right)=\mathbf{t}+\mathbf{s}$ where $\mathbf{s} \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ and $\mathbf{t} \in T$. By Note II.1.A, we then have $y^{\prime \prime}=x^{\prime}+\mathbf{t}+\mathbf{s}$ where $\mathbf{t} \in T$ and $\mathbf{s} \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$. So by Exercise II.1.2(b), $y^{\prime \prime} \in X^{\prime}+\mathrm{t}$. Therefore $X^{\prime \prime} \subseteq X^{\prime}+\mathrm{t}$.

Lemma II.1.05

Lemma II.1.05. Two affine subspaces X^{\prime} and $X^{\prime \prime}$ of X are parallel if and only if $X^{\prime \prime}=X^{\prime}+\mathbf{t}$ for some $\mathbf{t} \in T$.

Proof. (1) Suppose X^{\prime} and $X^{\prime \prime}$ are parallel. Let $x^{\prime} \in X^{\prime}$ and $x^{\prime \prime} \in X^{\prime \prime}$ be fixed.

Suppose $y^{\prime \prime} \in X^{\prime \prime}$. Set $\mathbf{t}=\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)$. Then $\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ and so $\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime}, X^{\prime}\right)$ since $\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)=\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ because X^{\prime} and $X^{\prime \prime}$ are parallel by hypothesis. Since $x^{\prime}, x^{\prime \prime}, y^{\prime \prime} \in X$ then by Definition
II.1.01 (A i) $\mathbf{d}\left(x^{\prime}, y^{\prime \prime}\right)=\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)+\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)$. We have set
$\mathbf{t}=\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right) \in T$ and we have $\mathbf{s}=\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$, so $\mathbf{d}\left(x^{\prime}, y^{\prime \prime}\right)=\mathbf{t}+\mathbf{s}$ where $\mathbf{s} \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ and $\mathbf{t} \in T$. By Note II.1.A, we then have $y^{\prime \prime}=x^{\prime}+\mathbf{t}+\mathbf{s}$ where $\mathbf{t} \in T$ and $\mathbf{s} \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$. So by Exercise II.1.2(b), $y^{\prime \prime} \in X^{\prime}+\mathbf{t}$. Therefore $X^{\prime \prime} \subseteq X^{\prime}+\mathbf{t}$.

Lemma II.1.05 (continued 1)

Proof (continued). Now suppose $y^{\prime \prime} \in X^{\prime}+\mathbf{t}$ where $\mathbf{t}=\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)$. By Exercise II.1.2(b), $y^{\prime \prime}=x^{\prime}+\mathbf{t}+\mathbf{s}$ for some $\mathbf{s} \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ (and this holds for any element of X^{\prime}, so we use $x^{\prime} \in X^{\prime}$ from above). This means, by Note II.1. A, that $\mathbf{d}\left(x^{\prime}, y^{\prime \prime}\right)=\mathbf{t}+\mathbf{s}=\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)+\mathbf{s}$. By Definition II.1.01 (A i) we have $\mathbf{d}\left(x^{\prime}, y^{\prime \prime}\right)=\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)+\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)$, so that $\mathbf{s}=\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ and since $\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)=\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ by the parallel hypothesis, then $\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$. Now $X^{\prime \prime}$ is an affine subspace with vector space $\mathrm{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ (by the definition of subspace) Since $x^{\prime \prime} \in X^{\prime \prime}$ then $\mathbf{d}_{x^{\prime \prime}}:\left\{x^{\prime \prime}\right\} \times X^{\prime \prime} \rightarrow \mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ is a bijection by Definition II.1.01 (A ii). Since $\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ then for some $z^{\prime \prime} \in X^{\prime \prime}$ we have $\mathrm{d}_{x^{\prime \prime}}\left(x^{\prime \prime}, z^{\prime \prime}\right) \in \mathrm{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ since $\mathrm{d}_{x^{\prime \prime}}$ is onto (surjective) But $\mathbf{d}_{x^{\prime \prime}}:\left\{x^{\prime \prime}\right\} \times X \rightarrow T$ is also a bijection by Definition II.1.01 (A ii) and so is one to one (injective); since $\mathbf{d}_{x^{\prime \prime}}\left(x^{\prime \prime}, z^{\prime \prime}\right)=\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)=\mathbf{d}_{x^{\prime \prime}}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ then $z^{\prime \prime}=y^{\prime \prime}$ and so $y^{\prime \prime} \in X^{\prime \prime}$.

Lemma II.1.05 (continued 1)

Proof (continued). Now suppose $y^{\prime \prime} \in X^{\prime}+\mathbf{t}$ where $\mathbf{t}=\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)$. By Exercise II.1.2(b), $y^{\prime \prime}=x^{\prime}+\mathbf{t}+\mathbf{s}$ for some $\mathbf{s} \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ (and this holds for any element of X^{\prime}, so we use $x^{\prime} \in X^{\prime}$ from above). This means, by Note II.1. A, that $\mathbf{d}\left(x^{\prime}, y^{\prime \prime}\right)=\mathbf{t}+\mathbf{s}=\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)+\mathbf{s}$. By Definition II.1.01 (A i) we have $\mathbf{d}\left(x^{\prime}, y^{\prime \prime}\right)=\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)+\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)$, so that $\mathbf{s}=\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ and since $\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)=\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ by the parallel hypothesis, then $\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$. Now $X^{\prime \prime}$ is an affine subspace with vector space $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ (by the definition of subspace). Since $x^{\prime \prime} \in X^{\prime \prime}$ then $\mathbf{d}_{x^{\prime \prime}}:\left\{x^{\prime \prime}\right\} \times X^{\prime \prime} \rightarrow \mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ is a bijection by Definition II.1.01 (A ii). Since $\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ then for some $z^{\prime \prime} \in X^{\prime \prime}$ we have $\mathbf{d}_{x^{\prime \prime}}\left(x^{\prime \prime}, z^{\prime \prime}\right) \in \mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ since $\mathbf{d}_{x^{\prime \prime}}$ is onto (surjective). But $\mathbf{d}_{x^{\prime \prime}}:\left\{x^{\prime \prime}\right\} \times X \rightarrow T$ is also a bijection by Definition II.1.01 (A ii) and so is one to one (injective); since $\mathbf{d}_{x^{\prime \prime}}\left(x^{\prime \prime}, z^{\prime \prime}\right)=\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)=\mathbf{d}_{x^{\prime \prime}}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ then $z^{\prime \prime}=y^{\prime \prime}$ and so $y^{\prime \prime} \in X^{\prime \prime}$. Therefore $X^{\prime}+\mathrm{t} \subseteq X^{\prime \prime}$ and combining this with the above result, we have $X^{\prime \prime}=X^{\prime}+\mathbf{t}$, as claimed.

Lemma II.1.05 (continued 1)

Proof (continued). Now suppose $y^{\prime \prime} \in X^{\prime}+\mathbf{t}$ where $\mathbf{t}=\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)$. By Exercise II.1.2(b), $y^{\prime \prime}=x^{\prime}+\mathbf{t}+\mathbf{s}$ for some $\mathbf{s} \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ (and this holds for any element of X^{\prime}, so we use $x^{\prime} \in X^{\prime}$ from above). This means, by Note II.1. A, that $\mathbf{d}\left(x^{\prime}, y^{\prime \prime}\right)=\mathbf{t}+\mathbf{s}=\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)+\mathbf{s}$. By Definition II.1.01 (A i) we have $\mathbf{d}\left(x^{\prime}, y^{\prime \prime}\right)=\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)+\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)$, so that $\mathbf{s}=\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ and since $\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)=\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ by the parallel hypothesis, then $\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$. Now $X^{\prime \prime}$ is an affine subspace with vector space $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ (by the definition of subspace). Since $x^{\prime \prime} \in X^{\prime \prime}$ then $\mathbf{d}_{x^{\prime \prime}}:\left\{x^{\prime \prime}\right\} \times X^{\prime \prime} \rightarrow \mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ is a bijection by Definition II.1.01 (A ii). Since $\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ then for some $z^{\prime \prime} \in X^{\prime \prime}$ we have $\mathbf{d}_{x^{\prime \prime}}\left(x^{\prime \prime}, z^{\prime \prime}\right) \in \mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ since $\mathbf{d}_{x^{\prime \prime}}$ is onto (surjective). But $\mathbf{d}_{x^{\prime \prime}}:\left\{x^{\prime \prime}\right\} \times X \rightarrow T$ is also a bijection by Definition II.1.01 (A ii) and so is one to one (injective); since $\mathbf{d}_{x^{\prime \prime}}\left(x^{\prime \prime}, z^{\prime \prime}\right)=\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)=\mathbf{d}_{x^{\prime \prime}}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ then $z^{\prime \prime}=y^{\prime \prime}$ and so $y^{\prime \prime} \in X^{\prime \prime}$. Therefore $X^{\prime}+\mathbf{t} \subseteq X^{\prime \prime}$ and combining this with the above result, we have $X^{\prime \prime}=X^{\prime}+\mathbf{t}$, as claimed.

Lemma II.1.05 (continued 2)

Proof (continued). (2) Now suppose $X^{\prime \prime}=X^{\prime}+\mathbf{t}$. Let $x^{\prime \prime}$ and $y^{\prime \prime}$ be arbitrary elements of $X^{\prime \prime}$. Since $x^{\prime \prime} \in X^{\prime}+\mathbf{t}$ then $x^{\prime \prime}=x^{\prime}+\mathbf{t}$ for some $x^{\prime} \in X^{\prime}$. By Note II.1.A this means $\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)=\mathbf{t}$ or $\mathbf{d}_{x^{\prime}}\left(x^{\prime}, x^{\prime \prime}\right)=\mathbf{t}$ and, similarly, $\mathbf{d}\left(y^{\prime}, y^{\prime \prime}\right)=\mathbf{t}$ or $\mathbf{d}_{y^{\prime}}\left(y^{\prime}, y^{\prime \prime}\right)=\mathbf{t}$ for some $y^{\prime} \in X^{\prime}$. Then

$$
\begin{aligned}
\mathbf{d}\left(x^{\prime}, y^{\prime}\right) & =\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)+\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)+\mathbf{d}\left(y^{\prime \prime}, y^{\prime}\right) \text { by Definition II.1.01 (A i) } \\
& =\mathbf{t}+\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)-\mathbf{d}\left(y^{\prime}, y^{\prime \prime}\right) \text { by Lemma II.1.A(b) } \\
& =\mathbf{t}+\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)-\mathbf{t}=\mathbf{d}\left(x^{\prime \prime}\right) .
\end{aligned}
$$

Since $\mathbf{d}\left(x^{\prime}, y^{\prime}\right) \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ then $\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ and, since $x^{\prime \prime}, y^{\prime \prime} \in X^{\prime \prime}$ are arbitrary, then $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right) \subseteq \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$.

Lemma II.1.05 (continued 2)

Proof (continued). (2) Now suppose $X^{\prime \prime}=X^{\prime}+\mathbf{t}$. Let $x^{\prime \prime}$ and $y^{\prime \prime}$ be arbitrary elements of $X^{\prime \prime}$. Since $x^{\prime \prime} \in X^{\prime}+\mathbf{t}$ then $x^{\prime \prime}=x^{\prime}+\mathbf{t}$ for some $x^{\prime} \in X^{\prime}$. By Note II.1.A this means $\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)=\mathbf{t}$ or $\mathbf{d}_{x^{\prime}}\left(x^{\prime}, x^{\prime \prime}\right)=\mathbf{t}$ and, similarly, $\mathbf{d}\left(y^{\prime}, y^{\prime \prime}\right)=\mathbf{t}$ or $\mathbf{d}_{y^{\prime}}\left(y^{\prime}, y^{\prime \prime}\right)=\mathbf{t}$ for some $y^{\prime} \in X^{\prime}$. Then

$$
\begin{aligned}
\mathbf{d}\left(x^{\prime}, y^{\prime}\right) & \left.=\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)+\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)+\mathbf{d}\left(y^{\prime \prime}, y^{\prime}\right) \text { by Definition II.1.01 (A i }\right) \\
& =\mathbf{t}+\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)-\mathbf{d}\left(y^{\prime}, y^{\prime \prime}\right) \text { by Lemma II.1.A(b) } \\
& =\mathbf{t}+\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)-\mathbf{t}=\mathbf{d}\left(x^{\prime \prime}\right) .
\end{aligned}
$$

Since $\mathbf{d}\left(x^{\prime}, y^{\prime}\right) \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ then $\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ and, since $x^{\prime \prime}, y^{\prime \prime} \in X^{\prime \prime}$ are arbitrary, then $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right) \subseteq \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$. Similarly, if and $X^{\prime \prime}$ are parallel, as claimed.

Lemma II.1.05 (continued 2)

Proof (continued). (2) Now suppose $X^{\prime \prime}=X^{\prime}+\mathbf{t}$. Let $x^{\prime \prime}$ and $y^{\prime \prime}$ be arbitrary elements of $X^{\prime \prime}$. Since $x^{\prime \prime} \in X^{\prime}+\mathbf{t}$ then $x^{\prime \prime}=x^{\prime}+\mathbf{t}$ for some $x^{\prime} \in X^{\prime}$. By Note II.1.A this means $\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)=\mathbf{t}$ or $\mathbf{d}_{x^{\prime}}\left(x^{\prime}, x^{\prime \prime}\right)=\mathbf{t}$ and, similarly, $\mathbf{d}\left(y^{\prime}, y^{\prime \prime}\right)=\mathbf{t}$ or $\mathbf{d}_{y^{\prime}}\left(y^{\prime}, y^{\prime \prime}\right)=\mathbf{t}$ for some $y^{\prime} \in X^{\prime}$. Then

$$
\begin{aligned}
\mathbf{d}\left(x^{\prime}, y^{\prime}\right) & =\mathbf{d}\left(x^{\prime}, x^{\prime \prime}\right)+\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)+\mathbf{d}\left(y^{\prime \prime}, y^{\prime}\right) \text { by Definition II.1.01 (A i) } \\
& =\mathbf{t}+\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)-\mathbf{d}\left(y^{\prime}, y^{\prime \prime}\right) \text { by Lemma II.1.A(b) } \\
& =\mathbf{t}+\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right)-\mathbf{t}=\mathbf{d}\left(x^{\prime \prime}\right) .
\end{aligned}
$$

Since $\mathbf{d}\left(x^{\prime}, y^{\prime}\right) \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ then $\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ and, since $x^{\prime \prime}, y^{\prime \prime} \in X^{\prime \prime}$ are arbitrary, then $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right) \subseteq \mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$. Similarly, if $x^{\prime}, y^{\prime} \in X^{\prime \prime}$ then $\mathbf{d}\left(x^{\prime}, y^{\prime}\right)=\mathbf{d}\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ and $\mathbf{d}\left(X^{\prime} \times X^{\prime}\right) \subseteq \mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$. Therefore, $\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)=\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ and X^{\prime} and $X^{\prime \prime}$ are parallel, as claimed.

Lemma II.1.06

Lemma II.1.06. For X a vector space, $X^{\prime} \subseteq X$ is an affine subspace of X if and only if X^{\prime} is a translate of some vector subspace of X.

Proof. Now X^{\prime} is a set of vectors from vector space X. So we use the natural affine structure of X and have $\mathbf{d}(\mathbf{x}, \mathbf{y})=\mathbf{y}-\mathbf{x}$. So $\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)=\left\{\mathbf{y}-\mathbf{x} \mid \mathbf{x}, \mathbf{y} \in X^{\prime}\right\}$. By the definition of affine subspace (Definition II.1.03(i)) d($X^{\prime} \times X^{\prime}$) is a vector subspace of X, denote $X^{\prime \prime}=\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$.

Lemma II.1.06

Lemma II.1.06. For X a vector space, $X^{\prime} \subseteq X$ is an affine subspace of X if and only if X^{\prime} is a translate of some vector subspace of X.

Proof. Now X^{\prime} is a set of vectors from vector space X. So we use the natural affine structure of X and have $\mathbf{d}(\mathbf{x}, \mathbf{y})=\mathbf{y}-\mathbf{x}$. So $\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)=\left\{\mathbf{y}-\mathbf{x} \mid \mathbf{x}, \mathbf{y} \in X^{\prime}\right\}$. By the definition of affine subspace (Definition II.1.03(i)) $\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ is a vector subspace of X, denote $X^{\prime \prime}=\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$. Now $\mathrm{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ is the difference of all vectors in $X^{\prime \prime}$ so $\mathrm{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right) \subseteq X^{\prime \prime}$ since $X^{\prime \prime}$ is a vector space. Also, since $0 \in X^{\prime \prime}$ then $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime} \subseteq X^{\prime \prime}\right.$ and hence $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right) \subseteq X^{\prime \prime}$ since $X^{\prime \prime}$ is a vector space. Also, since $\mathbf{0} \in X^{\prime \prime}$ then $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right) \supseteq X^{\prime \prime}$ and hence $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)=X^{\prime \prime}$. Hence $X^{\prime \prime}=\mathrm{d}\left(X^{\prime} \times X^{\prime}\right)=\mathrm{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$

Lemma II.1.06

Lemma II.1.06. For X a vector space, $X^{\prime} \subseteq X$ is an affine subspace of X if and only if X^{\prime} is a translate of some vector subspace of X.

Proof. Now X^{\prime} is a set of vectors from vector space X. So we use the natural affine structure of X and have $\mathbf{d}(\mathbf{x}, \mathbf{y})=\mathbf{y}-\mathbf{x}$. So $\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)=\left\{\mathbf{y}-\mathbf{x} \mid \mathbf{x}, \mathbf{y} \in X^{\prime}\right\}$. By the definition of affine subspace (Definition II.1.03(i)) $\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ is a vector subspace of X, denote $X^{\prime \prime}=\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$. Now $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ is the difference of all vectors in $X^{\prime \prime}$ so $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right) \subseteq X^{\prime \prime}$ since $X^{\prime \prime}$ is a vector space. Also, since $\mathbf{0} \in X^{\prime \prime}$ then $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime} \subseteq X^{\prime \prime}\right.$ and hence $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right) \subseteq X^{\prime \prime}$ since $X^{\prime \prime}$ is a vector space. Also, since $\mathbf{0} \in X^{\prime \prime}$ then $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right) \supseteq X^{\prime \prime}$ and hence $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)=X^{\prime \prime}$. Hence $X^{\prime \prime}=\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)=\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$. Since $X^{\prime \prime}$ is a vector subspace of X, then $X^{\prime \prime}$ is an affine subspace of X (by the definition of affine subspace). So by definition, X^{\prime} and $X^{\prime \prime}$ are parallel affine subspaces of X. Hence, by Lemma II.1.05, X^{\prime} is a translate of vector subspace $X^{\prime \prime}$ of X, as claimed.

Lemma II.1.06

Lemma II.1.06. For X a vector space, $X^{\prime} \subseteq X$ is an affine subspace of X if and only if X^{\prime} is a translate of some vector subspace of X.

Proof. Now X^{\prime} is a set of vectors from vector space X. So we use the natural affine structure of X and have $\mathbf{d}(\mathbf{x}, \mathbf{y})=\mathbf{y}-\mathbf{x}$. So $\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)=\left\{\mathbf{y}-\mathbf{x} \mid \mathbf{x}, \mathbf{y} \in X^{\prime}\right\}$. By the definition of affine subspace (Definition II.1.03(i)) $\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$ is a vector subspace of X, denote $X^{\prime \prime}=\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)$. Now $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$ is the difference of all vectors in $X^{\prime \prime}$ so $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right) \subseteq X^{\prime \prime}$ since $X^{\prime \prime}$ is a vector space. Also, since $\mathbf{0} \in X^{\prime \prime}$ then $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime} \subseteq X^{\prime \prime}\right.$ and hence $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right) \subseteq X^{\prime \prime}$ since $X^{\prime \prime}$ is a vector space. Also, since $\mathbf{0} \in X^{\prime \prime}$ then $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right) \supseteq X^{\prime \prime}$ and hence $\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)=X^{\prime \prime}$. Hence $X^{\prime \prime}=\mathbf{d}\left(X^{\prime} \times X^{\prime}\right)=\mathbf{d}\left(X^{\prime \prime} \times X^{\prime \prime}\right)$. Since $X^{\prime \prime}$ is a vector subspace of X, then $X^{\prime \prime}$ is an affine subspace of X (by the definition of affine subspace). So by definition, X^{\prime} and $X^{\prime \prime}$ are parallel affine subspaces of X. Hence, by Lemma II.1.05, X^{\prime} is a translate of vector subspace $X^{\prime \prime}$ of X, as claimed.

Lemma II.1.06 (continued)

Lemma II.1.06. For X a vector space, $X^{\prime} \subseteq X$ is an affine subspace of X if and only if X^{\prime} is a translate of some vector subspace of X.

Proof (continued). Conversely, if X^{\prime} is a translate of an affine subspace of X then by Exercise II.1.2(c) X^{\prime} is an affine subspace of X.

