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Lemma I11.1.04

Lemma 111.1.04. Let X be an n-dimensional real vector space with dual
space X*. Then dim(X*) = dim(X).
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Lemma I11.1.04

Lemma 111.1.04. Let X be an n-dimensional real vector space with dual
space X*. Then dim(X*) = dim(X).

Proof. Let 5 = {b1,by,...,b,} be a basis for X. For x € X where
x = alb; + a%by + - - - a"b,, = a'b;, define the n linear functionals

b': X - Rasbi(x)=afori=1,2,...,n.
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Lemma I11.1.04

Lemma 111.1.04. Let X be an n-dimensional real vector space with dual
space X*. Then dim(X*) = dim(X).

Proof. Let 5 = {b1,by,...,b,} be a basis for X. For x € X where
x = alb; + a%by + - - - a"b,, = a'b;, define the n linear functionals

b': X - Rasbi(x)=afori=1,2,...,n.

For any linear functional f € X*, there is a matrix [f] representing f based
on bases (3 of X and basis {e;} of R (see “Theorem 3.10. Matrix
Representation of Linear Transformations” in my online notes for 3.4.
Linear Transformations for Linear Algebra [MATH 2010]). Notice that [f]
is g x n. Let the jth column of [f] be the scalar z_‘jl so that

[fl=1[5,. ... ]
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Lemma [11.1.04 (continued)

Lemma 111.1.04. Let X be an n-dimensional real vector space with dual
space X*. Then dim(X*) = dim(X).
Proof (continued). Then
[l = [A.f-2%...f
= f}[1,0,...,0] 4+ £[0,1,0,...,0] + - -- + £}[0,0,...,0,1]
= f}[bY] + £ [b%] + - + f}[b"] since the 1 x n matrices in the
previous line represent the functionals in 3
= Cl[b/] using the Einstein summation convention

= [f'b].
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Lemma [11.1.04 (continued)

Lemma 111.1.04. Let X be an n-dimensional real vector space with dual
space X*. Then dim(X*) = dim(X).
Proof (continued). Then
[l = [A.f-2%...f
= f}[1,0,...,0] 4+ £[0,1,0,...,0] + - -- + £}[0,0,...,0,1]
= f}[bY] + £ [b%] + - + f}[b"] since the 1 x n matrices in the
previous line represent the functionals in 3

= Cl[b/] using the Einstein summation convention

= [f'b].
Now the choice of the f;-l for j=1,2,...,n is unique since 75-1 = f(bj) for
j=1,2,...,n. So the representation of F € X* as a linear combination of
b!,b? ...,b" is unique and hence 3* = {b',b?,... b"} is a basis for X*.
Therefore dim(X*) = n = dim(X). O
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Lemma IIl.1.A

Lemma IIl.1.A. Given a linear functional f € X* where X = R, there is
y € R” such that f(x) = (x,y) (the inner product on R"), and conversely
for each y € R" the mapping x +— (x,y) is a linear functional in X*. That
is, X* is isomorphic to R” when X = R".

5/14
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Lemma IIl.1.A

Lemma IIl.1.A. Given a linear functional f € X* where X = R, there is
y € R” such that f(x) = (x,y) (the inner product on R"), and conversely
for each y € R" the mapping x +— (x,y) is a linear functional in X*. That
is, X* is isomorphic to R” when X = R".

Proof. Let f € X* = (R")*. Let {e1,ez,...,e,} be the standard basis of
X =R" and definey € R as y = f(e;)e; + f(e2)ex + - - - + f(e,)e,. Then
for = xle! + x%e? + --- + x"e") we have
f(x) = f(x'e; +x%e2) + -+ x"e,)
x'f(e1) + x*f(e2) + - - - x"f(e,) since f is linear
= ([x}x2,...,x"],[f(e1),f(e2),...,f(en)])
= (%),

as claimed.
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Lemma I1l.1.A (continued)

Lemma Ill.1.A. Given a linear functional f € X* where X = R, there is
y € R” such that f(x) = (x,y) (the inner product on R"), and conversely
for each y € R” the mapping x — (x,y) is a linear functional in X*. That
is, X* is isomorphic to R” when X = R".

Proof (continued). Conversely, for given y € R”, the mapping x — (x,y)
is a functional and is linear since for scalars a, b € R we have

(ax + bz,y) = a(x,y) + b(z,y). So the mapping x — (x,y is a linear
functional for each y € R". Therefore X* = (R")* =2 R"” = X under the
vector space isomorphism f — (-, y) where fx = (x,y). O
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Theorem I11.1.A

Theorem Ill.1.A

Theorem Il1.1.A. Let 8 = {by,by,...,b,} be a basis for X and
B = {b},b),...,bl.} be a basis for Y such that the m x n matrix

A= [A]g/ represents a linear transformation from X to Y with respect to
ordered bases 3 and 3'. Let 3* and 3'* be the dual bases of X* and Y*,

* Nt
respectively. Then the n x m matrix A* = [A*]g,* = ([A]g) , where t
represents the transpose operator on a matrix.
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Theorem Ill.1.A

Theorem Il1.1.A. Let 8 = {by,by,...,b,} be a basis for X and
B = {b},b),...,bl.} be a basis for Y such that the m x n matrix

A= [A]g/ represents a linear transformation from X to Y with respect to
ordered bases 3 and 3'. Let 3* and 3'* be the dual bases of X* and Y*,

* Nt
respectively. Then the n x m matrix A* = [A*]g,* = ([A]g) , where t
represents the transpose operator on a matrix.

Proof. Let f € Y* where f = b’ + Hb/2 + -+ + £,,b’™ where

B'* ={b'1,b'2,...,b/™is the dual basis of Y*, so that f = f;b’"/ with the
Einstein summation convention. Then A*f = A*(f;b"/) € X*. Hence
applying these functionals in X* to the elements of basis 5 of X gives. ..
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Theorem III.1.A (continued 1)

Proof (continued).
(A*F)b; = (A*(fb; = f;(A*b"/)b; since scalars commute
= f;(b”A)b; by the definition of dual map A* (here f € Y*
of the definition is replaced with b’/ € 3"/ C Y*)
= fbY(Ab;) by associativity
= fj-b’j(A(O, 0,...,0,1,0,...,0)") since the coordinate vector
of b; with respect to the ordered basis 3 is
(0,0,...,0,1,0,...,0) and matrix A represents
A : X — Y with respect to ordered bases 3 and /'
= ﬁb’j(a}, a?,...,a"M)" since the matrix product produces the
ith column of A, which is a vector in Y and this column
vector is in coordinates with respect to ordered basis
B ={b,bh,....b }of Y...
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Theorem III.1.A (continued 2)

Proof (continued).

i1 .2
(A*F)b; = fb'(a;,a7,...,a")"
= f;a, by the definition of dual basis vector b’/ : Y — R
(or since the coordinate vector in the previous line represents

akb), and b"/b, = 5} by Note I1I.1.A). (%)
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Theorem III.1.A (continued 2)

Proof (continued).

(A'F)b; = fbI(ah ., o)
= fa by the definition of dual basis vector b’/ : Y — R

(or since the coordinate vector in the previous line represents

akb), and b"/b, = 5} by Note I1I.1.A). (*)
Now A*f : X — R, so A*f € X* and can be written in terms of the dual
basis 3* = {b%,b?,... b"}. In doing so, say A*f = c,b¥, we have by (x)
that '

fial = (A*f)b; = (ckb¥)b; = ¢, ¥ (by Note l11.1.A)

so that c,-zzj-a{.' fori=1,2,...,n.
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Theorem III.1.A (continued 2)

Proof (continued).

(A*F)b; = fb'(a},a?,...,a")"

i i i
= fa by the definition of dual basis vector b’/ : Y — R
(or since the coordinate vector in the previous line represents
akb), and b"/b, = 5} by Note I1I.1.A). (*)

Now A*f : X — R, so A*f € X* and can be written in terms of the dual
basis 3* = {b%,b?,... b"}. In doing so, say A*f = c,b¥, we have by (x)
that '
fial = (A*f)b; = (ckb¥)b; = ¢, ¥ (by Note l11.1.A)
so that ¢; = fia) for i = 1,2,...,n. Hence A*f = f;alb and the
coordinate vector of A*f with respect to ordered basis
B* = {bl,b?, ... ,b"} is (fa),fia),...,fah). But applying At to
f=(A,f—2,...,fn) (the coordinate vector of f € Y* with respect to
dual basis 3'* = {b’1,b’2,...,b'™}) gives. ..
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Theorem I11.1.A (continued 3)

Proof (continued).

-
al &l ... &) fi al a? ay’ fi
a2 a3 - 2 H B a} a3 ay' )
al’ ay ay f, al a2 ay f,
1 2 n m n n n m

apfi +aifo &+ al'fm fia)

1 2 '

_ a2ﬂ+32f2+"'+3§nfm B 6312

1 2 j

ayfi+ash+ -+ alfy fiah
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Theorem I11.1.A (continued 3)

Proof (continued).

al &l ... &) fi al a? ay’ fi
a2 a3 - 2 H B a} a3 ay' )
a" ay ay f, al a2 ay f,
1 2 n m n n n m

1 2 )

a%f1+a%6+~-+ai"fm fiag

| 2fhtaht o+l || fid

1 2 j

ayfi+ash+ -+ alfy fiah

Therefore, the n x m matrix At = ([A]g)t has the same effect as the

dual map A* : Y* — X* with respect to the ordered bases 3'* and 3*.

That is, [A*]gf* = ([A]g)t, as claimed. O
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Theorem 111.1.B

Theorem I11.1.B. Let 5 = {by,by,....b,} and 5/ = {b},b),... b}} be
bases for X and let 3* = {b!,b?,... b"} be the dual basis of 3 (so that
(* is a basis of X*). With 5/* = {b’!,b’2,... b’"} the dual basis of /,
for f € X* where

f= Z fib' = fib' = Z fib' = fb
i=1 i=1

we have f/ = b{)j where the bf are coordinates of b’ € 5 with respect to
ordered basis 3 (that is, b] satisfies b; = > 7_; bib; = bjbj).
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Theorem 111.1.B

Theorem I11.1.B. Let 5 = {by,by,....b,} and 5/ = {b},b),... b}} be
bases for X and let 3* = {b!,b?,... b"} be the dual basis of 3 (so that
(* is a basis of X*). With 5/* = {b’!,b’2,... b’"} the dual basis of /,
for f € X* where

f= Z fib' = fib' = Z fib' = fb
i=1 i=1

we have f/ = b{)j where the bf are coordinates of b’ € 5 with respect to
ordered basis 3 (that is, b] satisfies b; = > 7_; bib; = bjbj).

Proof. The matrix which converts coordinate vectors with respect to
ordered basis 3 to coordinate vectors with respect to ordered basis 3 is . ..
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Theorem II1.1.B (continued 1)

Proof (continued).

b} b .- b} -1
, 1 b b3 --- b2
my=(ms) =7
by by ... bP

since b, = b{bj by the previous Note (here 3 and [’ are interchanged from
the Note).

Differential Geometry May 12,2019 12/ 14



Theorem II1.1.B (continued 1)

Proof (continued).

b} b .- b} -1
, 1 b b3 --- b2
my=(ms) =7
by by ... bP

since b, = b{:bj by the previous Note (here 3 and [’ are interchanged from
the Note). By Theorem Ill.1.A, the dual map of I : X — X (here

I € L(X, X) maps each vector to itself but matrix [I]g, allows us to
represent this map as a conversion of coordinate vectors with respect to 3
to coordinate vectors with respect to '), I* : X* — X* (satisfying

I*(f) = f ol for all F € X*, by the definition of dual map), has matrix
representation. . .
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Theorem II1.1.B (continued 2)

Proof (continued).
=

So for f € X* where

bl b2 ... b7
b% b% <o bB
LB o b

f = i flbl — f;bl — i f:’_/b/i — f,‘b/i
i=1 i=1

(so that the coordinate [row] vectors of f are (f1, f,. ..
f') with respect to ordered bases 3* and (3'*, respectively), we

(f,f3,...,
have. ..
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Theorem 111.1.B (continued 3)

Proof (continued).

f bt b2
g |88
f.’ b.l b.2

so that f/ = b{ﬂ as claimed.

by
b
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