Differential Geometry

Chapter III. Dual Spaces

III.1. Contours, Covariance, Contravariance, Dual Basis—Proofs of Theorems

Table of contents

(1) Lemma III.1.04
(2) Lemma III.1.A
(3) Theorem III.1.A
(4) Theorem III.1.B

Lemma III.1.04

Lemma III.1.04. Let X be an n-dimensional real vector space with dual space X^{*}. Then $\operatorname{dim}\left(X^{*}\right)=\operatorname{dim}(X)$.

Proof. Let $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for X. For $\mathbf{x} \in X$ where $\mathbf{x}=a^{1} \mathbf{b}_{1}+a^{2} \mathbf{b}_{2}+\cdots a^{n} \mathbf{b}_{n}=a^{i} \mathbf{b}_{i}$, define the n linear functionals

$$
\mathbf{b}^{i}: X \rightarrow \mathbb{R} \text { as } \mathbf{b}^{i}(\mathbf{x})=a^{i} \text { for } i=1,2, \ldots, n .
$$

Lemma III.1.04

Lemma III.1.04. Let X be an n-dimensional real vector space with dual space X^{*}. Then $\operatorname{dim}\left(X^{*}\right)=\operatorname{dim}(X)$.

Proof. Let $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for X. For $\mathbf{x} \in X$ where $\mathbf{x}=a^{1} \mathbf{b}_{1}+a^{2} \mathbf{b}_{2}+\cdots a^{n} \mathbf{b}_{n}=a^{i} \mathbf{b}_{i}$, define the n linear functionals

$$
\mathbf{b}^{i}: X \rightarrow \mathbb{R} \text { as } \mathbf{b}^{i}(\mathbf{x})=a^{i} \text { for } i=1,2, \ldots, n
$$

For any linear functional $\mathbf{f} \in X^{*}$, there is a matrix [$\left.\mathbf{f}\right]$ representing \mathbf{f} based on bases β of X and basis $\left\{\mathbf{e}_{i}\right\}$ of \mathbf{R} (see "Theorem 3.10. Matrix Representation of Linear Transformations" in my online notes for 3.4. Linear Transformations for Linear Algebra [MATH 2010]). Notice that [f] is $q \times n$. Let the j th column of $[\mathbf{f}]$ be the scalar f_{j}^{1} so that $[\mathrm{f}]=\left[f_{1}^{1}, f_{2}^{1}, \ldots, f_{n}^{1}\right]$

Lemma III.1.04

Lemma III.1.04. Let X be an n-dimensional real vector space with dual space X^{*}. Then $\operatorname{dim}\left(X^{*}\right)=\operatorname{dim}(X)$.

Proof. Let $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for X. For $\mathbf{x} \in X$ where $\mathbf{x}=a^{1} \mathbf{b}_{1}+a^{2} \mathbf{b}_{2}+\cdots a^{n} \mathbf{b}_{n}=a^{i} \mathbf{b}_{i}$, define the n linear functionals

$$
\mathbf{b}^{i}: X \rightarrow \mathbb{R} \text { as } \mathbf{b}^{i}(\mathbf{x})=a^{i} \text { for } i=1,2, \ldots, n
$$

For any linear functional $\mathbf{f} \in X^{*}$, there is a matrix [$\left.\mathbf{f}\right]$ representing \mathbf{f} based on bases β of X and basis $\left\{\mathbf{e}_{i}\right\}$ of \mathbf{R} (see "Theorem 3.10. Matrix Representation of Linear Transformations" in my online notes for 3.4. Linear Transformations for Linear Algebra [MATH 2010]). Notice that [f] is $q \times n$. Let the j th column of [$\mathbf{f}]$ be the scalar f_{j}^{1} so that $[\mathbf{f}]=\left[f_{1}^{1}, f_{2}^{1}, \ldots, f_{n}^{1}\right]$.

Lemma III.1.04 (continued)

Lemma III.1.04. Let X be an n-dimensional real vector space with dual space X^{*}. Then $\operatorname{dim}\left(X^{*}\right)=\operatorname{dim}(X)$.

Proof (continued). Then

$$
\begin{aligned}
{[\mathbf{f}]=} & {\left[f_{1}^{1}, f-2^{1}, \ldots, f_{n}^{1}\right] } \\
= & f_{1}^{1}[1,0, \ldots, 0]+f_{2}^{1}[0,1,0, \ldots, 0]+\cdots+f_{n}^{1}[0,0, \ldots, 0,1] \\
= & f_{1}^{1}\left[\mathbf{b}^{1}\right]+f_{2}^{1}\left[\mathbf{b}^{2}\right]+\cdots+f_{n}^{1}\left[\mathbf{b}^{n}\right] \text { since the } 1 \times n \text { matrices in the } \\
& \quad \text { previous line represent the functionals in } \beta \\
= & f_{j}^{1}\left[\mathbf{b}^{j}\right] \text { using the Einstein summation convention } \\
= & {\left[f_{j}^{1} \mathbf{b}^{j}\right] . }
\end{aligned}
$$

Now the choice of the f_{j}^{1} for $j=1,2, \ldots, n$ is unique since $f_{j}^{1}=\mathbf{f}\left(\mathbf{b}_{j}\right)$ for $j=1,2, \ldots, n$. So the representation of $\mathbf{F} \in X^{*}$ as a linear combination of $\mathbf{b}^{1}, \mathbf{b}^{2}, \ldots, \mathbf{b}^{n}$ is unique and hence $\beta^{*}=\left\{\mathbf{b}^{1}, \mathbf{b}^{2}, \ldots, \mathbf{b}^{n}\right\}$ is a basis for X^{*}. Therefore $\operatorname{dim}\left(X^{*}\right)=n=\operatorname{dim}(X)$.

Lemma III.1.04 (continued)

Lemma III.1.04. Let X be an n-dimensional real vector space with dual space X^{*}. Then $\operatorname{dim}\left(X^{*}\right)=\operatorname{dim}(X)$.

Proof (continued). Then

$$
\begin{aligned}
{[\mathbf{f}]=} & {\left[f_{1}^{1}, f-2^{1}, \ldots, f_{n}^{1}\right] } \\
= & f_{1}^{1}[1,0, \ldots, 0]+f_{2}^{1}[0,1,0, \ldots, 0]+\cdots+f_{n}^{1}[0,0, \ldots, 0,1] \\
= & f_{1}^{1}\left[\mathbf{b}^{1}\right]+f_{2}^{1}\left[\mathbf{b}^{2}\right]+\cdots+f_{n}^{1}\left[\mathbf{b}^{n}\right] \text { since the } 1 \times n \text { matrices in the } \\
& \quad \text { previous line represent the functionals in } \beta \\
= & f_{j}^{1}\left[\mathbf{b}^{j}\right] \text { using the Einstein summation convention } \\
= & {\left[f_{j}^{1} \mathbf{b}^{j}\right] . }
\end{aligned}
$$

Now the choice of the f_{j}^{1} for $j=1,2, \ldots, n$ is unique since $f_{j}^{1}=\mathbf{f}\left(\mathbf{b}_{j}\right)$ for $j=1,2, \ldots, n$. So the representation of $\mathbf{F} \in X^{*}$ as a linear combination of $\mathbf{b}^{1}, \mathbf{b}^{2}, \ldots, \mathbf{b}^{n}$ is unique and hence $\beta^{*}=\left\{\mathbf{b}^{1}, \mathbf{b}^{2}, \ldots, \mathbf{b}^{n}\right\}$ is a basis for X^{*}. Therefore $\operatorname{dim}\left(X^{*}\right)=n=\operatorname{dim}(X)$.

Lemma III.1.A

Lemma III.1.A. Given a linear functional $\mathbf{f} \in X^{*}$ where $X=\mathbb{R}$, there is $\mathbf{y} \in \mathbb{R}^{n}$ such that $\mathbf{f}(\mathbf{x})=\langle\mathbf{x}, \mathbf{y}\rangle$ (the inner product on \mathbb{R}^{n}), and conversely for each $\mathbf{y} \in \mathbb{R}^{n}$ the mapping $\mathbf{x} \mapsto\langle\mathbf{x}, \mathbf{y}\rangle$ is a linear functional in X^{*}. That is, X^{*} is isomorphic to \mathbb{R}^{n} when $X=\mathbb{R}^{n}$.

```
Proof. Let }\mathbf{f}\in\mp@subsup{X}{}{*}=(\mp@subsup{\mathbb{R}}{}{n}\mp@subsup{)}{}{*}\mathrm{ . Let }{\mp@subsup{\mathbf{e}}{1}{},\mp@subsup{\mathbf{e}}{2}{},\ldots,\mp@subsup{\mathbf{e}}{n}{}}\mathrm{ be the standard basis of
X=\mp@subsup{\mathbb{R}}{}{n}}\mathrm{ and define }\mathbf{y}\in\mathbb{R}\mathrm{ as }\mathbf{y}=\mathbf{f}(\mp@subsup{\mathbf{e}}{i}{})\mp@subsup{\mathbf{e}}{1}{}+\mathbf{f}(\mp@subsup{\mathbf{e}}{2}{})\mp@subsup{\mathbf{e}}{2}{}+\cdots+\mathbf{f}(\mp@subsup{\mathbf{e}}{n}{})\mp@subsup{\mathbf{e}}{n}{}\mathrm{ . Then
for = x }\mp@subsup{}{}{1}\mp@subsup{\mathbf{e}}{}{1}+\mp@subsup{x}{}{2}\mp@subsup{\mathbf{e}}{}{2}+\cdots+\mp@subsup{x}{}{n}\mp@subsup{\mathbf{e}}{}{n})\mathrm{ we have
f(x)}=\mathbf{f}(\mp@subsup{x}{}{1}\mp@subsup{\mathbf{e}}{1}{}+\mp@subsup{x}{}{2}\mp@subsup{\mathbf{e}}{2}{})+\cdots+\mp@subsup{x}{}{n}\mp@subsup{\mathbf{e}}{n}{}
= x
= \langle[x 1},\mp@subsup{x}{}{2},\ldots,\mp@subsup{x}{}{n}],[\mathbf{f}(\mp@subsup{\mathbf{e}}{1}{}),\mathbf{f}(\mp@subsup{\mathbf{e}}{2}{}),\ldots,\mathbf{f}(\mp@subsup{\mathbf{e}}{n}{})]
= \langle\mathbf{x,y}\rangle,
```


Lemma III.1.A

Lemma III.1.A. Given a linear functional $\mathbf{f} \in X^{*}$ where $X=\mathbb{R}$, there is $\mathbf{y} \in \mathbb{R}^{n}$ such that $\mathbf{f}(\mathbf{x})=\langle\mathbf{x}, \mathbf{y}\rangle$ (the inner product on \mathbb{R}^{n}), and conversely for each $\mathbf{y} \in \mathbb{R}^{n}$ the mapping $\mathbf{x} \mapsto\langle\mathbf{x}, \mathbf{y}\rangle$ is a linear functional in X^{*}. That is, X^{*} is isomorphic to \mathbb{R}^{n} when $X=\mathbb{R}^{n}$.

Proof. Let $\mathbf{f} \in X^{*}=\left(\mathbb{R}^{n}\right)^{*}$. Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ be the standard basis of $X=\mathbb{R}^{n}$ and define $\mathbf{y} \in \mathbb{R}$ as $\mathbf{y}=\mathbf{f}\left(\mathbf{e}_{i}\right) \mathbf{e}_{1}+\mathbf{f}\left(\mathbf{e}_{2}\right) \mathbf{e}_{2}+\cdots+\mathbf{f}\left(\mathbf{e}_{n}\right) \mathbf{e}_{n}$. Then for $\left.=x^{1} \mathbf{e}^{1}+x^{2} \mathbf{e}^{2}+\cdots+x^{n} \mathbf{e}^{n}\right)$ we have

$$
\begin{aligned}
\mathbf{f}(\mathbf{x}) & \left.=\mathbf{f}\left(x^{1} \mathbf{e}_{1}+x^{2} \mathbf{e}_{2}\right)+\cdots+x^{n} \mathbf{e}_{n}\right) \\
& =x^{1} \mathbf{f}\left(\mathbf{e}_{1}\right)+x^{2} \mathbf{f}\left(\mathbf{e}_{2}\right)+\cdots x^{n} \mathbf{f}\left(\mathbf{e}_{n}\right) \text { since } \mathbf{f} \text { is linear } \\
& =\left\langle\left[x^{1}, x^{2}, \ldots, x^{n}\right],\left[\mathbf{f}\left(\mathbf{e}_{1}\right), \mathbf{f}\left(\mathbf{e}_{2}\right), \ldots, \mathbf{f}\left(\mathbf{e}_{n}\right)\right]\right\rangle \\
& =\langle\mathbf{x}, \mathbf{y}\rangle,
\end{aligned}
$$

as claimed.

Lemma III.1.A (continued)

Lemma III.1.A. Given a linear functional $\mathbf{f} \in X^{*}$ where $X=\mathbb{R}$, there is $\mathbf{y} \in \mathbb{R}^{n}$ such that $\mathbf{f}(\mathbf{x})=\langle\mathbf{x}, \mathbf{y}\rangle$ (the inner product on \mathbb{R}^{n}), and conversely for each $\mathbf{y} \in \mathbb{R}^{n}$ the mapping $\mathbf{x} \mapsto\langle\mathbf{x}, \mathbf{y}\rangle$ is a linear functional in X^{*}. That is, X^{*} is isomorphic to \mathbb{R}^{n} when $X=\mathbb{R}^{n}$.

Proof (continued). Conversely, for given $\mathbf{y} \in \mathbb{R}^{n}$, the mapping $\mathbf{x} \mapsto\langle\mathbf{x}, \mathbf{y}\rangle$ is a functional and is linear since for scalars $a, b \in \mathbb{R}$ we have $\langle a \mathbf{x}+b \mathbf{z}, \mathbf{y}\rangle=a\langle\mathbf{x}, \mathbf{y}\rangle+b\langle\mathbf{z}, \mathbf{y}\rangle$. So the mapping $\mathbf{x} \mapsto\langle\mathbf{x}, \mathbf{y}$ is a linear functional for each $\mathbf{y} \in \mathbb{R}^{n}$. Therefore $X^{*}=\left(\mathbb{R}^{n}\right)^{*} \cong \mathbb{R}^{n}=X$ under the vector space isomorphism $\mathbf{f} \mapsto\langle\cdot, \mathbf{y}\rangle$ where $\mathbf{f x}=\langle\mathbf{x}, \mathbf{y}\rangle$.

Theorem III.1.A

Theorem III.1.A. Let $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for X and $\beta^{\prime}=\left\{\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}, \ldots, \mathbf{b}_{m}^{\prime}\right\}$ be a basis for Y such that the $m \times n$ matrix $A=[\mathbf{A}]_{\beta}^{\beta^{\prime}}$ represents a linear transformation from X to Y with respect to ordered bases β and β^{\prime}. Let β^{*} and $\beta^{* *}$ be the dual bases of X^{*} and Y^{*}, respectively. Then the $n \times m$ matrix $A^{*}=\left[\mathbf{A}^{*}\right]_{\beta^{\prime *}}^{\beta^{*}}=\left([\mathbf{A}]_{\beta}^{\beta^{\prime}}\right)^{t}$, where t represents the transpose operator on a matrix.

Proof. Let $\mathbf{f} \in Y^{*}$ where $\mathbf{f}=f_{1} \mathbf{b}^{\prime 1}+f_{2} \mathbf{b}^{\prime 2}+\cdots+f_{m} \mathbf{b}^{\prime m}$ where $\beta^{\prime *}=\left\{\mathbf{b}^{\prime 1}, \mathbf{b}^{\prime 2}, \ldots, \mathbf{b}^{\prime m}\right.$ is the dual basis of Y^{*}, so that $\mathbf{f}=f_{j} \mathbf{b}^{\prime j}$ with the Einstein summation convention. Then $A^{*} f=\mathbf{A}^{*}\left(f_{j} \mathbf{b}^{\prime j}\right) \in X^{*}$. Hence applying these functionals in X^{*} to the elements of basis β of X gives.

Theorem III.1.A

Theorem III.1.A. Let $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for X and $\beta^{\prime}=\left\{\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}, \ldots, \mathbf{b}_{m}^{\prime}\right\}$ be a basis for Y such that the $m \times n$ matrix $A=[\mathbf{A}]_{\beta}^{\beta^{\prime}}$ represents a linear transformation from X to Y with respect to ordered bases β and β^{\prime}. Let β^{*} and β^{*} be the dual bases of X^{*} and Y^{*}, respectively. Then the $n \times m$ matrix $A^{*}=\left[\mathbf{A}^{*}\right]_{\beta^{\prime *}}^{\beta^{*}}=\left([\mathbf{A}]_{\beta}^{\beta^{\prime}}\right)^{t}$, where t represents the transpose operator on a matrix.

Proof. Let $\mathbf{f} \in Y^{*}$ where $\mathbf{f}=f_{1} \mathbf{b}^{\prime 1}+f_{2} \mathbf{b}^{\prime 2}+\cdots+f_{m} \mathbf{b}^{\prime m}$ where $\beta^{\prime *}=\left\{\mathbf{b}^{\prime 1}, \mathbf{b}^{\prime 2}, \ldots, \mathbf{b}^{\prime m}\right.$ is the dual basis of Y^{*}, so that $\mathbf{f}=f_{j} \mathbf{b}^{\prime j}$ with the Einstein summation convention. Then $A^{*} \mathbf{f}=\mathbf{A}^{*}\left(f_{j} \mathbf{b}^{\prime j}\right) \in X^{*}$. Hence applying these functionals in X^{*} to the elements of basis β of X gives...

Theorem III.1.A (continued 1)

Proof (continued).

$\left(\mathbf{A}^{*} \mathbf{F}\right) \mathbf{b}_{i}=\left(\mathbf{A}^{*}\left(f_{j} \mathbf{b}_{i}=f_{j}\left(\mathbf{A}^{*} \mathbf{b}^{\prime j}\right) \mathbf{b}_{i}\right.\right.$ since scalars commute
$=f_{j}\left(\mathbf{b}^{\prime j} \mathbf{A}\right) \mathbf{b}_{i}$ by the definition of dual map \mathbf{A}^{*} (here $\mathbf{f} \in Y^{*}$ of the definition is replaced with $\mathbf{b}^{\prime j} \in \beta^{\prime j} \subset Y^{*}$)
$=f_{j} \mathbf{b}^{\prime j}\left(\mathbf{A} \mathbf{b}_{i}\right)$ by associativity
$=f_{j} \mathbf{b}^{\prime j}\left(A(0,0, \ldots, 0,1,0, \ldots, 0)^{t}\right)$ since the coordinate vector of \mathbf{b}_{i} with respect to the ordered basis β is $(0,0, \ldots, 0,1,0, \ldots, 0)$ and matrix A represents A : $X \rightarrow Y$ with respect to ordered bases β and β^{\prime}
$=f_{j} \mathbf{b}^{\prime j}\left(a_{i}^{1}, a_{i}^{2}, \ldots, a_{i}^{m}\right)^{t}$ since the matrix product produces the ith column of A, which is a vector in Y and this column vector is in coordinates with respect to ordered basis $\beta^{\prime}=\left\{\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}, \ldots, \mathbf{b}_{m}^{\prime}\right\}$ of $Y \ldots$

Theorem III.1.A (continued 2)

Proof (continued).

$\left(\mathbf{A}^{*} \mathbf{F}\right) \mathbf{b}_{i}=f_{j} \mathbf{b}^{\prime j}\left(a_{i}^{1}, a_{i}^{2}, \ldots, a_{i}^{m}\right)^{t}$
$=f_{j} a_{i}^{j}$ by the definition of dual basis vector $\mathbf{b}^{\prime j}: Y \rightarrow \mathbb{R}$ (or since the coordinate vector in the previous line represents $a_{i}^{k} \mathbf{b}_{k}^{\prime}$ and $\mathbf{b}^{\prime j} \mathbf{b}_{k}^{\prime}=\delta_{k}^{i}$ by Note III.1.A).

Now $\mathbf{A}^{*} \mathrm{f}: X \rightarrow \mathbb{R}$, so $\mathbf{A}^{*} \mathrm{f} \in X^{*}$ and can be written in terms of the dual basis $\beta^{*}=\left\{\mathbf{b}^{1}, \mathbf{b}^{2}, \ldots, \mathbf{b}^{n}\right\}$. In doing so, say $\mathbf{A}^{*} \mathbf{f}=c_{k} \mathbf{b}^{k}$, we have by (*) that

$$
f_{j} a_{i}^{j}=\left(\mathbf{A}^{*} \mathbf{f}\right) \mathbf{b}_{i}=\left(c_{k} \mathbf{b}^{k}\right) \mathbf{b}_{i}=c_{k} \delta_{i}^{k}(\text { by Note III.1.A })
$$

so that $c_{i}=f_{j} a_{i}^{j}$ for $i=1,2, \ldots, n$.

Theorem III.1.A (continued 2)

Proof (continued).

$\left(\mathbf{A}^{*} \mathbf{F}\right) \mathbf{b}_{i}=f_{j} \mathbf{b}^{\prime j}\left(a_{i}^{1}, a_{i}^{2}, \ldots, a_{i}^{m}\right)^{t}$
$=f_{j} a_{i}^{j}$ by the definition of dual basis vector $\mathbf{b}^{\prime j}: Y \rightarrow \mathbb{R}$ (or since the coordinate vector in the previous line represents $a_{i}^{k} \mathbf{b}_{k}^{\prime}$ and $\mathbf{b}^{\prime j} \mathbf{b}_{k}^{\prime}=\delta_{k}^{i}$ by Note III.1.A).

Now $\mathbf{A}^{*} \mathbf{f}: X \rightarrow \mathbb{R}$, so $\mathbf{A}^{*} \mathbf{f} \in X^{*}$ and can be written in terms of the dual basis $\beta^{*}=\left\{\mathbf{b}^{1}, \mathbf{b}^{2}, \ldots, \mathbf{b}^{n}\right\}$. In doing so, say $\mathbf{A}^{*} \mathbf{f}=c_{k} \mathbf{b}^{k}$, we have by (*) that

$$
f_{j} a_{i}^{j}=\left(\mathbf{A}^{*} \mathbf{f}\right) \mathbf{b}_{i}=\left(c_{k} \mathbf{b}^{k}\right) \mathbf{b}_{i}=c_{k} \delta_{i}^{k} \text { (by Note III.1.A) }
$$

so that $c_{i}=f_{j} a_{i}^{j}$ for $i=1,2, \ldots, n$. Hence $\boldsymbol{A}^{*} \mathrm{f}=f_{j} a_{j}^{j} \mathbf{b}^{i}$ and the
coordinate vector of $\mathbf{A}^{*} \mathbf{f}$ with respect to ordered basis

Theorem III.1.A (continued 2)

Proof (continued).

$\left(\mathbf{A}^{*} \mathbf{F}\right) \mathbf{b}_{i}=f_{j} \mathbf{b}^{\prime j}\left(a_{i}^{1}, a_{i}^{2}, \ldots, a_{i}^{m}\right)^{t}$
$=f_{j} a_{i}^{j}$ by the definition of dual basis vector $\mathbf{b}^{\prime j}: Y \rightarrow \mathbb{R}$ (or since the coordinate vector in the previous line represents $a_{i}^{k} \mathbf{b}_{k}^{\prime}$ and $\mathbf{b}^{\prime j} \mathbf{b}_{k}^{\prime}=\delta_{k}^{i}$ by Note III.1.A).
Now $\mathbf{A}^{*} \mathbf{f}: X \rightarrow \mathbb{R}$, so $\mathbf{A}^{*} \mathbf{f} \in X^{*}$ and can be written in terms of the dual basis $\beta^{*}=\left\{\mathbf{b}^{1}, \mathbf{b}^{2}, \ldots, \mathbf{b}^{n}\right\}$. In doing so, say $\mathbf{A}^{*} \mathbf{f}=c_{k} \mathbf{b}^{k}$, we have by $(*)$ that

$$
f_{j} a_{i}^{j}=\left(\mathbf{A}^{*} \mathbf{f}\right) \mathbf{b}_{i}=\left(c_{k} \mathbf{b}^{k}\right) \mathbf{b}_{i}=c_{k} \delta_{i}^{k}(\text { by Note III.1.A })
$$

so that $c_{i}=f_{j} a_{i}^{j}$ for $i=1,2, \ldots, n$. Hence $\mathbf{A}^{*} \mathbf{f}=f_{j} a_{i}^{j} \mathbf{b}^{i}$ and the coordinate vector of $\mathbf{A}^{*} \mathbf{f}$ with respect to ordered basis $\beta^{*}=\left\{\mathbf{b}^{1}, \mathbf{b}^{2}, \ldots, \mathbf{b}^{n}\right\}$ is $\left(f_{j} a_{1}^{j}, f_{j} a_{2}^{j}, \ldots, f_{j} a_{n}^{j}\right)$. But applying A^{t} to $\mathbf{f}=\left(f_{1}, f-2, \ldots, f_{m}\right)$ (the coordinate vector of $\mathbf{f} \in Y^{*}$ with respect to dual basis $\left.\beta^{\prime *}=\left\{\mathbf{b}^{\prime 1}, \mathbf{b}^{\prime 2}, \ldots, \mathbf{b}^{\prime m}\right\}\right)$ gives...

Theorem III.1.A (continued 3)

Proof (continued).

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{1}^{1} & a_{2}^{1} & \cdots & a_{n}^{1} \\
a_{1}^{2} & a_{2}^{2} & \cdots & a_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1}^{m} & a_{2}^{m} & \cdots & a_{n}^{m}
\end{array}\right)^{T}\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{m}
\end{array}\right)=\left(\begin{array}{cccc}
a_{1}^{1} & a_{1}^{2} & \cdots & a_{1}^{m} \\
a_{2}^{1} & a_{2}^{2} & \cdots & a_{2}^{m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n}^{1} & a_{n}^{2} & \cdots & a_{n}^{m}
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{m}
\end{array}\right) \\
=\left(\begin{array}{c}
a_{1}^{1} f_{1}+a_{1}^{2} f_{2}+\cdots+a_{1}^{m} f_{m} \\
a_{2}^{1} f_{1}+a_{2}^{2} f_{2}+\cdots+a_{2}^{m} f_{m} \\
\vdots \\
a_{n}^{1} f_{1}+a_{n}^{2} f_{2}+\cdots+a_{n}^{m} f_{m}
\end{array}\right)=\left(\begin{array}{c}
f_{j} a_{1}^{j} \\
f_{j} a_{2}^{\prime} \\
\vdots \\
f_{j} a_{n}^{j}
\end{array}\right) .
\end{gathered}
$$

Therefore, the $n \times m$ matrix $A^{t}=\left([\mathbf{A}]_{\beta}^{\beta^{\prime}}\right)^{t}$ has the same effect as the dual map $\mathbf{A}^{*}: Y^{*} \rightarrow X^{*}$ with respect to the ordered bases $\beta^{\prime *}$ and β^{*}. That is, $\left[\mathbf{A}^{*}\right]_{\beta^{* *}}^{\beta^{*}}=\left([\mathbf{A}]_{\beta}^{\beta^{\prime}}\right)^{t}$, as claimed.

Theorem III.1.A (continued 3)

Proof (continued).

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{1}^{1} & a_{2}^{1} & \cdots & a_{n}^{1} \\
a_{1}^{2} & a_{2}^{2} & \cdots & a_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1}^{m} & a_{2}^{m} & \cdots & a_{n}^{m}
\end{array}\right)^{T}\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{m}
\end{array}\right)=\left(\begin{array}{cccc}
a_{1}^{1} & a_{1}^{2} & \cdots & a_{1}^{m} \\
a_{2}^{1} & a_{2}^{2} & \cdots & a_{2}^{m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n}^{1} & a_{n}^{2} & \cdots & a_{n}^{m}
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{m}
\end{array}\right) \\
=\left(\begin{array}{c}
a_{1}^{1} f_{1}+a_{1}^{2} f_{2}+\cdots+a_{1}^{m} f_{m} \\
a_{2}^{1} f_{1}+a_{2}^{2} f_{2}+\cdots+a_{2}^{m} f_{m} \\
\vdots \\
a_{n}^{1} f_{1}+a_{n}^{2} f_{2}+\cdots+a_{n}^{m} f_{m}
\end{array}\right)=\left(\begin{array}{c}
f_{j} a_{1}^{j} \\
f_{j} a_{2}^{j} \\
\vdots \\
f_{j} a_{n}^{j}
\end{array}\right)
\end{gathered}
$$

Therefore, the $n \times m$ matrix $A^{t}=\left([\mathbf{A}]_{\beta}^{\beta^{\prime}}\right)^{t}$ has the same effect as the dual map $\mathbf{A}^{*}: Y^{*} \rightarrow X^{*}$ with respect to the ordered bases β^{*} and β^{*}. That is, $\left[\mathbf{A}^{*}\right]_{\beta^{\prime *}}^{\beta^{*}}=\left([\mathbf{A}]_{\beta}^{\beta^{\prime}}\right)^{t}$, as claimed.

Theorem III.1.B

Theorem III.1.B. Let $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ and $\beta^{\prime}=\left\{\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}, \ldots, \mathbf{b}_{n}^{\prime}\right\}$ be bases for X and let $\beta^{*}=\left\{\mathbf{b}^{1}, \mathbf{b}^{2}, \ldots, \mathbf{b}^{n}\right\}$ be the dual basis of β (so that β^{*} is a basis of X^{*}). With $\beta^{\prime *}=\left\{\mathbf{b}^{\prime 1}, \mathbf{b}^{\prime 2}, \ldots, \mathbf{b}^{\prime n}\right\}$ the dual basis of β^{\prime}, for $\mathbf{f} \in X^{*}$ where

$$
\mathbf{f}=\sum_{i=1}^{n} f_{i} \mathbf{b}^{i}=f_{i} \mathbf{b}^{i}=\sum_{i=1}^{n} f_{i}^{\prime} \mathbf{b}^{\prime i}=f_{i}^{\prime} \mathbf{b}^{\prime i}
$$

we have $f_{i}^{\prime}=b_{i}^{j} f_{j}$ where the b_{i}^{j} are coordinates of $\mathbf{b}_{i}^{\prime} \in \beta^{\prime}$ with respect to ordered basis β (that is, b_{i}^{j} satisfies $\mathbf{b}_{i}^{\prime}=\sum_{j=1}^{n} b_{i}^{j} \mathbf{b}_{j}=b_{i}^{j} \mathbf{b}_{j}$).

Proof. The matrix which converts coordinate vectors with respect to ordered basis β to coordinate vectors with respect to ordered basis β^{\prime} is

Theorem III.1.B

Theorem III.1.B. Let $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ and $\beta^{\prime}=\left\{\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}, \ldots, \mathbf{b}_{n}^{\prime}\right\}$ be bases for X and let $\beta^{*}=\left\{\mathbf{b}^{1}, \mathbf{b}^{2}, \ldots, \mathbf{b}^{n}\right\}$ be the dual basis of β (so that β^{*} is a basis of X^{*}). With $\beta^{\prime *}=\left\{\mathbf{b}^{\prime 1}, \mathbf{b}^{\prime 2}, \ldots, \mathbf{b}^{\prime n}\right\}$ the dual basis of β^{\prime}, for $\mathbf{f} \in X^{*}$ where

$$
\mathbf{f}=\sum_{i=1}^{n} f_{i} \mathbf{b}^{i}=f_{i} \mathbf{b}^{i}=\sum_{i=1}^{n} f_{i}^{\prime} \mathbf{b}^{\prime i}=f_{i}^{\prime} \mathbf{b}^{\prime i}
$$

we have $f_{i}^{\prime}=b_{i}^{j} f_{j}$ where the b_{i}^{j} are coordinates of $\mathbf{b}_{i}^{\prime} \in \beta^{\prime}$ with respect to ordered basis β (that is, b_{i}^{j} satisfies $\mathbf{b}_{i}^{\prime}=\sum_{j=1}^{n} b_{i}^{j} \mathbf{b}_{j}=b_{i}^{j} \mathbf{b}_{j}$).

Proof. The matrix which converts coordinate vectors with respect to ordered basis β to coordinate vectors with respect to ordered basis β^{\prime} is ...

Theorem III.1.B (continued 1)

Proof (continued).

$$
[I]_{\beta}^{\beta^{\prime}}=\left([I]_{\beta^{\prime}}^{\beta}\right)^{-1}=\left[\begin{array}{cccc}
b_{1}^{1} & b_{2}^{1} & \cdots & b_{n}^{1} \\
b_{1}^{2} & b_{2}^{2} & \cdots & b_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
b_{1}^{n} & b_{2}^{n} & \cdots & b_{n}^{n}
\end{array}\right]^{-1}
$$

since $\mathbf{b}_{i}^{\prime}=b_{i}^{j} \mathbf{b}_{j}$ by the previous Note (here β and β^{\prime} are interchanged from the Note). By Theorem III.1.A, the dual map of I: $X \rightarrow X$ (here
$\mathbf{I} \in L(X, X)$ maps each vector to itself but matrix $[I]_{\beta}^{\beta^{\prime}}$ allows us to represent this map as a conversion of coordinate vectors with respect to β to coordinate vectors with respect to β^{\prime}), I* : $X^{*} \rightarrow X^{*}$ (satisfying $\mathbf{I}^{*}(\mathbf{f})=\mathbf{f} \circ \mathbf{I}$ for all $\mathbf{F} \in X^{*}$, by the definition of dual map), has matrix representation.

Theorem III.1.B (continued 1)

Proof (continued).

$$
[\mathbf{I}]_{\beta}^{\beta^{\prime}}=\left([\mathbf{I}]_{\beta^{\prime}}^{\beta}\right)^{-1}=\left[\begin{array}{cccc}
b_{1}^{1} & b_{2}^{1} & \cdots & b_{n}^{1} \\
b_{1}^{2} & b_{2}^{2} & \cdots & b_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
b_{1}^{n} & b_{2}^{n} & \cdots & b_{n}^{n}
\end{array}\right]^{-1}
$$

since $\mathbf{b}_{i}^{\prime}=b_{i}^{j} \mathbf{b}_{j}$ by the previous Note (here β and β^{\prime} are interchanged from the Note). By Theorem III.1.A, the dual map of I : $X \rightarrow X$ (here $\mathbf{I} \in L(X, X)$ maps each vector to itself but matrix $[I]_{\beta}^{\beta^{\prime}}$ allows us to represent this map as a conversion of coordinate vectors with respect to β to coordinate vectors with respect to β^{\prime}), $\mathbf{I}^{*}: X^{*} \rightarrow X^{*}$ (satisfying $\mathbf{I}^{*}(\mathbf{f})=\mathbf{f} \circ \mathbf{I}$ for all $\mathbf{F} \in X^{*}$, by the definition of dual map), has matrix representation...

Theorem III.1.B (continued 2)

Proof (continued).

$$
\left[\operatorname{l}^{*}\right]_{\beta^{*}}^{\beta^{*}}=\left([\operatorname{ll}]_{\beta^{\prime}}^{\beta}\right)^{T}=\left[\begin{array}{cccc}
b_{1}^{1} & b_{1}^{2} & \cdots & b_{1}^{n} \\
b_{2}^{1} & b_{2}^{2} & \cdots & b_{2}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n}^{1} & b_{n}^{2} & \cdots & b_{n}^{n}
\end{array}\right] .
$$

So for $\mathbf{f} \in X^{*}$ where

$$
\mathbf{f}=\sum_{i=1}^{n} f_{i} \mathbf{b}^{i}=f_{i} \mathbf{b}^{i}=\sum_{i=1}^{n} f_{i}^{\prime} \mathbf{b}^{\prime i}=f_{i} \mathbf{b}^{\prime i}
$$

(so that the coordinate [row] vectors of \mathbf{f} are $\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ and $\left(f_{1}^{\prime}, f_{2}^{\prime}, \ldots, f_{n}^{\prime}\right)$ with respect to ordered bases β^{*} and $\beta^{\prime *}$, respectively), we have...

Theorem III.1.B (continued 3)

Proof (continued).

$$
\left[\begin{array}{c}
f_{1}^{\prime} \\
f_{2}^{\prime} \\
\vdots \\
f_{n}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
b_{1}^{1} & b_{1}^{2} & \cdots & b_{1}^{n} \\
b_{2}^{1} & b_{2}^{2} & \cdots & b_{2}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n}^{1} & b_{n}^{2} & \cdots & b_{n}^{n}
\end{array}\right]\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1}^{j} f_{j} \\
b_{2}^{j} f_{j} \\
\vdots \\
b_{n}^{j} f_{j}
\end{array}\right]
$$

so that $f_{i}^{\prime}=b_{i}^{j} f_{j}$, as claimed.

