Differential Geometry

Chapter III. Dual Spaces III.1. Contours, Covariance, Contravariance, Dual Basis—Proofs of Theorems

Lemma III.1.04

Lemma III.1.04. Let X be an *n*-dimensional real vector space with dual space X^* . Then dim $(X^*) = \dim(X)$.

Proof. Let $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ be a basis for X. For $\mathbf{x} \in X$ where $\mathbf{x} = a^1 \mathbf{b}_1 + a^2 \mathbf{b}_2 + \dots + a^n \mathbf{b}_n = a^i \mathbf{b}_i$, define the *n* linear functionals

$$\mathbf{b}^i: X \to \mathbb{R}$$
 as $\mathbf{b}^i(\mathbf{x}) = a^i$ for $i = 1, 2, \dots, n$.

Lemma III.1.04

Lemma III.1.04. Let X be an *n*-dimensional real vector space with dual space X^* . Then dim $(X^*) = \dim(X)$.

Proof. Let $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ be a basis for X. For $\mathbf{x} \in X$ where $\mathbf{x} = a^1 \mathbf{b}_1 + a^2 \mathbf{b}_2 + \cdots + a^n \mathbf{b}_n = a^i \mathbf{b}_i$, define the *n* linear functionals

$$\mathbf{b}^i:X o\mathbb{R}$$
 as $\mathbf{b}^i(\mathbf{x})=a^i$ for $i=1,2,\ldots,n.$

For any linear functional $\mathbf{f} \in X^*$, there is a matrix $[\mathbf{f}]$ representing \mathbf{f} based on bases β of X and basis $\{\mathbf{e}_i\}$ of \mathbf{R} (see "Theorem 3.10. Matrix Representation of Linear Transformations" in my online notes for 3.4. Linear Transformations for Linear Algebra [MATH 2010]). Notice that $[\mathbf{f}]$ is $q \times n$. Let the *j*th column of $[\mathbf{f}]$ be the scalar f_j^1 so that $[\mathbf{f}] = [f_1^1, f_2^1, \ldots, f_n^1]$.

Lemma III.1.04

Lemma III.1.04. Let X be an *n*-dimensional real vector space with dual space X^* . Then dim $(X^*) = \dim(X)$.

Proof. Let $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ be a basis for X. For $\mathbf{x} \in X$ where $\mathbf{x} = a^1 \mathbf{b}_1 + a^2 \mathbf{b}_2 + \cdots + a^n \mathbf{b}_n = a^i \mathbf{b}_i$, define the *n* linear functionals

$$\mathbf{b}^i: X \to \mathbb{R}$$
 as $\mathbf{b}^i(\mathbf{x}) = a^i$ for $i = 1, 2, \dots, n$.

For any linear functional $\mathbf{f} \in X^*$, there is a matrix $[\mathbf{f}]$ representing \mathbf{f} based on bases β of X and basis $\{\mathbf{e}_i\}$ of \mathbf{R} (see "Theorem 3.10. Matrix Representation of Linear Transformations" in my online notes for 3.4. Linear Transformations for Linear Algebra [MATH 2010]). Notice that $[\mathbf{f}]$ is $q \times n$. Let the *j*th column of $[\mathbf{f}]$ be the scalar f_j^1 so that $[\mathbf{f}] = [f_1^1, f_2^1, \dots, f_n^1]$.

Lemma III.1.04 (continued)

Lemma III.1.04. Let X be an *n*-dimensional real vector space with dual space X^* . Then dim $(X^*) = \dim(X)$.

Proof (continued). Then

$$\begin{aligned} [\mathbf{f}] &= [f_1^1, f - 2^1, \dots, f_n^1] \\ &= f_1^1[1, 0, \dots, 0] + f_2^1[0, 1, 0, \dots, 0] + \dots + f_n^1[0, 0, \dots, 0, 1] \\ &= f_1^1[\mathbf{b}^1] + f_2^1[\mathbf{b}^2] + \dots + f_n^1[\mathbf{b}^n] \text{ since the } 1 \times n \text{ matrices in the} \\ &\text{ previous line represent the functionals in } \beta \\ &= f_j^1[\mathbf{b}^j] \text{ using the Einstein summation convention} \\ &= [f_i^1\mathbf{b}^j]. \end{aligned}$$

Now the choice of the f_j^1 for j = 1, 2, ..., n is unique since $f_j^1 = \mathbf{f}(\mathbf{b}_j)$ for j = 1, 2, ..., n. So the representation of $\mathbf{F} \in X^*$ as a linear combination of $\mathbf{b}^1, \mathbf{b}^2, ..., \mathbf{b}^n$ is unique and hence $\beta^* = {\mathbf{b}^1, \mathbf{b}^2, ..., \mathbf{b}^n}$ is a basis for X^* . Therefore dim $(X^*) = n = \dim(X)$.

Lemma III.1.04 (continued)

Lemma III.1.04. Let X be an *n*-dimensional real vector space with dual space X^* . Then dim $(X^*) = \dim(X)$.

Proof (continued). Then

$$\begin{split} [\mathbf{f}] &= [f_1^1, f - 2^1, \dots, f_n^1] \\ &= f_1^1[1, 0, \dots, 0] + f_2^1[0, 1, 0, \dots, 0] + \dots + f_n^1[0, 0, \dots, 0, 1] \\ &= f_1^1[\mathbf{b}^1] + f_2^1[\mathbf{b}^2] + \dots + f_n^1[\mathbf{b}^n] \text{ since the } 1 \times n \text{ matrices in the} \\ &= r_j^1[\mathbf{b}^j] \text{ using the Einstein summation convention} \\ &= [f_j^1\mathbf{b}^j]. \end{split}$$
ow the choice of the f_j^1 for $j = 1, 2, \dots, n$ is unique since $f_j^1 = \mathbf{f}(\mathbf{b}_j)$ for

Now the choice of the f_j^1 for j = 1, 2, ..., n is unique since $f_j^1 = \mathbf{f}(\mathbf{b}_j)$ for j = 1, 2, ..., n. So the representation of $\mathbf{F} \in X^*$ as a linear combination of $\mathbf{b}^1, \mathbf{b}^2, ..., \mathbf{b}^n$ is unique and hence $\beta^* = {\mathbf{b}^1, \mathbf{b}^2, ..., \mathbf{b}^n}$ is a basis for X^* . Therefore dim $(X^*) = n = \dim(X)$.

Lemma III.1.A

Lemma III.1.A. Given a linear functional $\mathbf{f} \in X^*$ where $X = \mathbb{R}$, there is $\mathbf{y} \in \mathbb{R}^n$ such that $\mathbf{f}(\mathbf{x}) = \langle \mathbf{x}, \mathbf{y} \rangle$ (the inner product on \mathbb{R}^n), and conversely for each $\mathbf{y} \in \mathbb{R}^n$ the mapping $\mathbf{x} \mapsto \langle \mathbf{x}, \mathbf{y} \rangle$ is a linear functional in X^* . That is, X^* is isomorphic to \mathbb{R}^n when $X = \mathbb{R}^n$.

Proof. Let $\mathbf{f} \in X^* = (\mathbb{R}^n)^*$. Let $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ be the standard basis of $X = \mathbb{R}^n$ and define $\mathbf{y} \in \mathbb{R}$ as $\mathbf{y} = \mathbf{f}(\mathbf{e}_i)\mathbf{e}_1 + \mathbf{f}(\mathbf{e}_2)\mathbf{e}_2 + \dots + \mathbf{f}(\mathbf{e}_n)\mathbf{e}_n$. Then for $= x^1\mathbf{e}^1 + x^2\mathbf{e}^2 + \dots + x^n\mathbf{e}^n$ we have

$$\begin{aligned} \mathbf{f}(\mathbf{x}) &= \mathbf{f}(x^1\mathbf{e}_1 + x^2\mathbf{e}_2) + \dots + x^n\mathbf{e}_n) \\ &= x^1\mathbf{f}(\mathbf{e}_1) + x^2\mathbf{f}(\mathbf{e}_2) + \dots + x^n\mathbf{f}(\mathbf{e}_n) \text{ since } \mathbf{f} \text{ is linear} \\ &= \langle [x^1, x^2, \dots, x^n], [\mathbf{f}(\mathbf{e}_1), \mathbf{f}(\mathbf{e}_2), \dots, \mathbf{f}(\mathbf{e}_n)] \rangle \\ &= \langle \mathbf{x}, \mathbf{y} \rangle, \end{aligned}$$

as claimed.

Lemma III.1.A

Lemma III.1.A. Given a linear functional $\mathbf{f} \in X^*$ where $X = \mathbb{R}$, there is $\mathbf{y} \in \mathbb{R}^n$ such that $\mathbf{f}(\mathbf{x}) = \langle \mathbf{x}, \mathbf{y} \rangle$ (the inner product on \mathbb{R}^n), and conversely for each $\mathbf{y} \in \mathbb{R}^n$ the mapping $\mathbf{x} \mapsto \langle \mathbf{x}, \mathbf{y} \rangle$ is a linear functional in X^* . That is, X^* is isomorphic to \mathbb{R}^n when $X = \mathbb{R}^n$.

Proof. Let $\mathbf{f} \in X^* = (\mathbb{R}^n)^*$. Let $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ be the standard basis of $X = \mathbb{R}^n$ and define $\mathbf{y} \in \mathbb{R}$ as $\mathbf{y} = \mathbf{f}(\mathbf{e}_i)\mathbf{e}_1 + \mathbf{f}(\mathbf{e}_2)\mathbf{e}_2 + \dots + \mathbf{f}(\mathbf{e}_n)\mathbf{e}_n$. Then for $= x^1\mathbf{e}^1 + x^2\mathbf{e}^2 + \dots + x^n\mathbf{e}^n$ we have

$$\begin{aligned} \mathbf{f}(\mathbf{x}) &= \mathbf{f}(x^1\mathbf{e}_1 + x^2\mathbf{e}_2) + \dots + x^n\mathbf{e}_n) \\ &= x^1\mathbf{f}(\mathbf{e}_1) + x^2\mathbf{f}(\mathbf{e}_2) + \dots + x^n\mathbf{f}(\mathbf{e}_n) \text{ since } \mathbf{f} \text{ is linear} \\ &= \langle [x^1, x^2, \dots, x^n], [\mathbf{f}(\mathbf{e}_1), \mathbf{f}(\mathbf{e}_2), \dots, \mathbf{f}(\mathbf{e}_n)] \rangle \\ &= \langle \mathbf{x}, \mathbf{y} \rangle, \end{aligned}$$

as claimed.

Lemma III.1.A (continued)

Lemma III.1.A. Given a linear functional $\mathbf{f} \in X^*$ where $X = \mathbb{R}$, there is $\mathbf{y} \in \mathbb{R}^n$ such that $\mathbf{f}(\mathbf{x}) = \langle \mathbf{x}, \mathbf{y} \rangle$ (the inner product on \mathbb{R}^n), and conversely for each $\mathbf{y} \in \mathbb{R}^n$ the mapping $\mathbf{x} \mapsto \langle \mathbf{x}, \mathbf{y} \rangle$ is a linear functional in X^* . That is, X^* is isomorphic to \mathbb{R}^n when $X = \mathbb{R}^n$.

Proof (continued). Conversely, for given $\mathbf{y} \in \mathbb{R}^n$, the mapping $\mathbf{x} \mapsto \langle \mathbf{x}, \mathbf{y} \rangle$ is a functional and is linear since for scalars $a, b \in \mathbb{R}$ we have $\langle a\mathbf{x} + b\mathbf{z}, \mathbf{y} \rangle = a \langle \mathbf{x}, \mathbf{y} \rangle + b \langle \mathbf{z}, \mathbf{y} \rangle$. So the mapping $\mathbf{x} \mapsto \langle \mathbf{x}, \mathbf{y}$ is a linear functional for each $\mathbf{y} \in \mathbb{R}^n$. Therefore $X^* = (\mathbb{R}^n)^* \cong \mathbb{R}^n = X$ under the vector space isomorphism $\mathbf{f} \mapsto \langle \cdot, \mathbf{y} \rangle$ where $\mathbf{f}\mathbf{x} = \langle \mathbf{x}, \mathbf{y} \rangle$.

Theorem III.1.A

Theorem III.1.A. Let $\beta = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ be a basis for X and $\beta' = \{\mathbf{b}'_1, \mathbf{b}'_2, \dots, \mathbf{b}'_m\}$ be a basis for Y such that the $m \times n$ matrix $A = [\mathbf{A}]^{\beta'}_{\beta}$ represents a linear transformation from X to Y with respect to ordered bases β and β' . Let β^* and β'^* be the dual bases of X^* and Y^* , respectively. Then the $n \times m$ matrix $A^* = [\mathbf{A}^*]^{\beta^*}_{\beta'^*} = ([\mathbf{A}]^{\beta'}_{\beta})^t$, where t represents the transpose operator on a matrix.

Proof. Let $\mathbf{f} \in Y^*$ where $\mathbf{f} = f_1 \mathbf{b}'^1 + f_2 \mathbf{b}'^2 + \cdots + f_m \mathbf{b}'^m$ where $\beta'^* = {\mathbf{b}'^1, \mathbf{b}'^2, \dots, \mathbf{b}'^m}$ is the dual basis of Y^* , so that $\mathbf{f} = f_j \mathbf{b}'^j$ with the Einstein summation convention. Then $A^*\mathbf{f} = \mathbf{A}^*(f_j \mathbf{b}'^j) \in X^*$. Hence applying these functionals in X^* to the elements of basis β of X gives...

Theorem III.1.A

Theorem III.1.A. Let $\beta = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ be a basis for X and $\beta' = \{\mathbf{b}'_1, \mathbf{b}'_2, \dots, \mathbf{b}'_m\}$ be a basis for Y such that the $m \times n$ matrix $A = [\mathbf{A}]^{\beta'}_{\beta}$ represents a linear transformation from X to Y with respect to ordered bases β and β' . Let β^* and β'^* be the dual bases of X^* and Y^* , respectively. Then the $n \times m$ matrix $A^* = [\mathbf{A}^*]^{\beta^*}_{\beta'^*} = ([\mathbf{A}]^{\beta'}_{\beta})^t$, where t represents the transpose operator on a matrix.

Proof. Let $\mathbf{f} \in Y^*$ where $\mathbf{f} = f_1 \mathbf{b}'^1 + f_2 \mathbf{b}'^2 + \cdots + f_m \mathbf{b}'^m$ where $\beta'^* = {\mathbf{b}'^1, \mathbf{b}'^2, \dots, \mathbf{b}'^m}$ is the dual basis of Y^* , so that $\mathbf{f} = f_j \mathbf{b}'^j$ with the Einstein summation convention. Then $A^* \mathbf{f} = \mathbf{A}^*(f_j \mathbf{b}'^j) \in X^*$. Hence applying these functionals in X^* to the elements of basis β of X gives...

Theorem III.1.A (continued 1)

Proof (continued).

$$(\mathbf{A}^*\mathbf{F})\mathbf{b}_i = (\mathbf{A}^*(f_j\mathbf{b}_i = f_j(\mathbf{A}^*\mathbf{b}'^j)\mathbf{b}_i \text{ since scalars commute})$$

 $= f_j(\mathbf{b}'^j \mathbf{A}) \mathbf{b}_i \text{ by the definition of dual map } \mathbf{A}^* \text{ (here } \mathbf{f} \in Y^* \text{ of the definition is replaced with } \mathbf{b}'^j \in \beta'^j \subset Y^* \text{)}$

$$= f_j \mathbf{b}^{\prime j} (\mathbf{A} \mathbf{b}_i)$$
 by associativity

- = $f_j \mathbf{b}^{\prime j} (A(0, 0, \dots, 0, 1, 0, \dots, 0)^t)$ since the coordinate vector of \mathbf{b}_i with respect to the ordered basis β is
 - $(0, 0, \ldots, 0, 1, 0, \ldots, 0)$ and matrix A represents
 - ${\sf A}:X o Y$ with respect to ordered bases eta and eta'
- $= f_j \mathbf{b}^{\prime j} (a_i^1, a_i^2, \dots, a_i^m)^t \text{ since the matrix product produces the}$ *i*th column of *A*, which is a vector in *Y* and this column vector is in coordinates with respect to ordered basis $\beta' = \{\mathbf{b}_1', \mathbf{b}_2', \dots, \mathbf{b}_m'\}$ of *Y*...

Theorem III.1.A (continued 2)

Proof (continued).

$\begin{aligned} (\mathbf{A}^*\mathbf{F})\mathbf{b}_i &= f_j \mathbf{b}'^j (a_i^1, a_i^2, \dots, a_i^m)^t \\ &= f_j a_i^j \text{ by the definition of dual basis vector } \mathbf{b}'^j : Y \to \mathbb{R} \\ &\quad \text{(or since the coordinate vector in the previous line represents)} \\ &\quad a_i^k \mathbf{b}_k' \text{ and } \mathbf{b}'^j \mathbf{b}_k' = \delta_k^i \text{ by Note III.1.A}. \end{aligned}$

Now $\mathbf{A}^*\mathbf{f}: X \to \mathbb{R}$, so $\mathbf{A}^*\mathbf{f} \in X^*$ and can be written in terms of the dual basis $\beta^* = {\mathbf{b}^1, \mathbf{b}^2, \dots, \mathbf{b}^n}$. In doing so, say $\mathbf{A}^*\mathbf{f} = c_k \mathbf{b}^k$, we have by (*) that

$$f_j a_i^j = (\mathbf{A}^* \mathbf{f}) \mathbf{b}_i = (c_k \mathbf{b}^k) \mathbf{b}_i = c_k \delta_i^k$$
 (by Note III.1.A)

so that $c_i = f_j a_i^j$ for i = 1, 2, ..., n.

Theorem III.1.A (continued 2)

Proof (continued).

$$\begin{aligned} (\mathbf{A}^*\mathbf{F})\mathbf{b}_i &= f_j \mathbf{b}^{\prime j} (a_i^1, a_i^2, \dots, a_i^m)^t \\ &= f_j a_i^j \text{ by the definition of dual basis vector } \mathbf{b}^{\prime j} : Y \to \mathbb{R} \\ & \text{ (or since the coordinate vector in the previous line represents } \\ & a_i^k \mathbf{b}_k^\prime \text{ and } \mathbf{b}^{\prime j} \mathbf{b}_k^\prime = \delta_k^i \text{ by Note III.1.A}. \end{aligned}$$

Now $\mathbf{A}^*\mathbf{f}: X \to \mathbb{R}$, so $\mathbf{A}^*\mathbf{f} \in X^*$ and can be written in terms of the dual basis $\beta^* = {\mathbf{b}^1, \mathbf{b}^2, \dots, \mathbf{b}^n}$. In doing so, say $\mathbf{A}^*\mathbf{f} = c_k \mathbf{b}^k$, we have by (*) that

$$f_j a_i^j = (\mathbf{A}^* \mathbf{f}) \mathbf{b}_i = (c_k \mathbf{b}^k) \mathbf{b}_i = c_k \delta_i^k$$
 (by Note III.1.A)

so that $c_i = f_j a_i^j$ for i = 1, 2, ..., n. Hence $\mathbf{A}^* \mathbf{f} = f_j a_i^j \mathbf{b}^i$ and the coordinate vector of $\mathbf{A}^* \mathbf{f}$ with respect to ordered basis $\beta^* = \{\mathbf{b}^1, \mathbf{b}^2, ..., \mathbf{b}^n\}$ is $(f_j a_1^j, f_j a_2^j, ..., f_j a_n^j)$. But applying A^t to $\mathbf{f} = (f_1, f - 2, ..., f_m)$ (the coordinate vector of $\mathbf{f} \in Y^*$ with respect to dual basis $\beta'^* = \{\mathbf{b}'^1, \mathbf{b}'^2, ..., \mathbf{b}'^m\}$) gives...

Theorem III.1.A (continued 2)

Proof (continued).

$$\begin{aligned} (\mathbf{A}^*\mathbf{F})\mathbf{b}_i &= f_j \mathbf{b}^{\prime j} (a_i^1, a_i^2, \dots, a_i^m)^t \\ &= f_j a_i^j \text{ by the definition of dual basis vector } \mathbf{b}^{\prime j} : Y \to \mathbb{R} \\ & \text{ (or since the coordinate vector in the previous line represents } \\ & a_i^k \mathbf{b}_k^\prime \text{ and } \mathbf{b}^{\prime j} \mathbf{b}_k^\prime = \delta_k^i \text{ by Note III.1.A}. \end{aligned}$$

Now $\mathbf{A}^*\mathbf{f}: X \to \mathbb{R}$, so $\mathbf{A}^*\mathbf{f} \in X^*$ and can be written in terms of the dual basis $\beta^* = {\mathbf{b}^1, \mathbf{b}^2, \dots, \mathbf{b}^n}$. In doing so, say $\mathbf{A}^*\mathbf{f} = c_k \mathbf{b}^k$, we have by (*) that

$$f_j a_i^j = (\mathbf{A}^* \mathbf{f}) \mathbf{b}_i = (c_k \mathbf{b}^k) \mathbf{b}_i = c_k \delta_i^k$$
 (by Note III.1.A)

so that $c_i = f_j a_i^j$ for i = 1, 2, ..., n. Hence $\mathbf{A}^* \mathbf{f} = f_j a_i^j \mathbf{b}^i$ and the coordinate vector of $\mathbf{A}^* \mathbf{f}$ with respect to ordered basis $\beta^* = {\mathbf{b}^1, \mathbf{b}^2, ..., \mathbf{b}^n}$ is $(f_j a_1^j, f_j a_2^j, ..., f_j a_n^j)$. But applying A^t to $\mathbf{f} = (f_1, f - 2, ..., f_m)$ (the coordinate vector of $\mathbf{f} \in Y^*$ with respect to dual basis $\beta'^* = {\mathbf{b}'^1, \mathbf{b}'^2, ..., \mathbf{b}'^m}$) gives...

Theorem III.1.A

Theorem III.1.A (continued 3)

Proof (continued).

$$\begin{pmatrix} a_{1}^{1} & a_{2}^{1} & \cdots & a_{n}^{1} \\ a_{1}^{2} & a_{2}^{2} & \cdots & a_{n}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1}^{m} & a_{2}^{m} & \cdots & a_{n}^{m} \end{pmatrix}^{T} \begin{pmatrix} f_{1} \\ f_{2} \\ \vdots \\ f_{m} \end{pmatrix} = \begin{pmatrix} a_{1}^{1} & a_{1}^{2} & \cdots & a_{1}^{m} \\ a_{2}^{1} & a_{2}^{2} & \cdots & a_{2}^{m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n}^{1} & a_{n}^{2} & \cdots & a_{n}^{m} \end{pmatrix} \begin{pmatrix} f_{1} \\ f_{2} \\ \vdots \\ \vdots \\ f_{n} \end{pmatrix}$$
$$= \begin{pmatrix} a_{1}^{1} f_{1} + a_{1}^{2} f_{2} + \cdots + a_{1}^{m} f_{m} \\ a_{2}^{1} f_{1} + a_{2}^{2} f_{2} + \cdots + a_{2}^{m} f_{m} \\ \vdots \\ a_{n}^{1} f_{1} + a_{n}^{2} f_{2} + \cdots + a_{n}^{m} f_{m} \end{pmatrix} = \begin{pmatrix} f_{j} a_{j}^{j} \\ f_{j} a_{2}^{j} \\ \vdots \\ f_{j} a_{n}^{j} \end{pmatrix} .$$

Therefore, the $n \times m$ matrix $A^t = \left([\mathbf{A}]_{\beta}^{\beta'} \right)^t$ has the same effect as the dual map $\mathbf{A}^* : Y^* \to X^*$ with respect to the ordered bases β'^* and β^* . That is, $[\mathbf{A}^*]_{\beta'^*}^{\beta^*} = \left([\mathbf{A}]_{\beta}^{\beta'} \right)^t$, as claimed.

Theorem III.1.A

Theorem III.1.A (continued 3)

Proof (continued).

$$\begin{pmatrix} a_{1}^{1} & a_{2}^{1} & \cdots & a_{n}^{1} \\ a_{1}^{2} & a_{2}^{2} & \cdots & a_{n}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1}^{m} & a_{2}^{m} & \cdots & a_{n}^{m} \end{pmatrix}^{T} \begin{pmatrix} f_{1} \\ f_{2} \\ \vdots \\ f_{m} \end{pmatrix} = \begin{pmatrix} a_{1}^{1} & a_{1}^{2} & \cdots & a_{1}^{m} \\ a_{2}^{1} & a_{2}^{2} & \cdots & a_{2}^{m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n}^{1} & a_{n}^{2} & \cdots & a_{n}^{m} \end{pmatrix} \begin{pmatrix} f_{1} \\ f_{2} \\ \vdots \\ \vdots \\ f_{n} \end{pmatrix}$$
$$= \begin{pmatrix} a_{1}^{1} f_{1} + a_{1}^{2} f_{2} + \cdots + a_{1}^{m} f_{m} \\ a_{2}^{1} f_{1} + a_{2}^{2} f_{2} + \cdots + a_{2}^{m} f_{m} \\ \vdots \\ a_{n}^{1} f_{1} + a_{n}^{2} f_{2} + \cdots + a_{n}^{m} f_{m} \end{pmatrix} = \begin{pmatrix} f_{j} a_{1}^{j} \\ f_{j} a_{2}^{j} \\ \vdots \\ f_{j} a_{n}^{j} \end{pmatrix} .$$

Therefore, the $n \times m$ matrix $A^t = \left([\mathbf{A}]_{\beta}^{\beta'} \right)^t$ has the same effect as the dual map $\mathbf{A}^* : Y^* \to X^*$ with respect to the ordered bases β'^* and β^* . That is, $[\mathbf{A}^*]_{\beta'^*}^{\beta^*} = \left([\mathbf{A}]_{\beta}^{\beta'} \right)^t$, as claimed.

Theorem III.1.B

Theorem III.1.B. Let $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ and $\beta' = {\mathbf{b}'_1, \mathbf{b}'_2, \dots, \mathbf{b}'_n}$ be bases for X and let $\beta^* = {\mathbf{b}^1, \mathbf{b}^2, \dots, \mathbf{b}^n}$ be the dual basis of β (so that β^* is a basis of X^*). With $\beta'^* = {\mathbf{b}'^1, \mathbf{b}'^2, \dots, \mathbf{b}'^n}$ the dual basis of β' , for $\mathbf{f} \in X^*$ where

$$\mathbf{f} = \sum_{i=1}^{n} f_i \mathbf{b}^i = f_i \mathbf{b}^i = \sum_{i=1}^{n} f_i' \mathbf{b}'^i = f_i' \mathbf{b}'^i$$

we have $f'_i = b^j_i f_j$ where the b^j_i are coordinates of $\mathbf{b}'_i \in \beta'$ with respect to ordered basis β (that is, b^j_i satisfies $\mathbf{b}'_i = \sum_{j=1}^n b^j_j \mathbf{b}_j = b^j_j \mathbf{b}_j$).

Proof. The matrix which converts coordinate vectors with respect to ordered basis β to coordinate vectors with respect to ordered basis β' is ...

Theorem III.1.B

Theorem III.1.B. Let $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ and $\beta' = {\mathbf{b}'_1, \mathbf{b}'_2, \dots, \mathbf{b}'_n}$ be bases for X and let $\beta^* = {\mathbf{b}^1, \mathbf{b}^2, \dots, \mathbf{b}^n}$ be the dual basis of β (so that β^* is a basis of X^*). With $\beta'^* = {\mathbf{b}'^1, \mathbf{b}'^2, \dots, \mathbf{b}'^n}$ the dual basis of β' , for $\mathbf{f} \in X^*$ where

$$\mathbf{f} = \sum_{i=1}^{n} f_i \mathbf{b}^i = f_i \mathbf{b}^i = \sum_{i=1}^{n} f_i' \mathbf{b}'^i = f_i' \mathbf{b}'^i$$

we have $f'_i = b^j_i f_j$ where the b^j_i are coordinates of $\mathbf{b}'_i \in \beta'$ with respect to ordered basis β (that is, b^j_i satisfies $\mathbf{b}'_i = \sum_{j=1}^n b^j_j \mathbf{b}_j = b^j_i \mathbf{b}_j$).

Proof. The matrix which converts coordinate vectors with respect to ordered basis β to coordinate vectors with respect to ordered basis β' is ...

Theorem III.1.B (continued 1)

Proof (continued).

$$[\mathbf{I}]_{\beta}^{\beta'} = \left([\mathbf{I}]_{\beta'}^{\beta} \right)^{-1} = \begin{bmatrix} b_1^1 & b_2^1 & \cdots & b_n^1 \\ b_1^2 & b_2^2 & \cdots & b_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ b_1^n & b_2^n & \cdots & b_n^n \end{bmatrix}^{-1}$$

since $\mathbf{b}'_i = \mathbf{b}'_i \mathbf{b}_j$ by the previous Note (here β and β' are interchanged from the Note). By Theorem III.1.A, the dual map of $\mathbf{I} : X \to X$ (here $\mathbf{I} \in L(X, X)$ maps each vector to itself but matrix $[\mathbf{I}]^{\beta'}_{\beta}$ allows us to represent this map as a conversion of coordinate vectors with respect to β to coordinate vectors with respect to β'), $\mathbf{I}^* : X^* \to X^*$ (satisfying $\mathbf{I}^*(\mathbf{f}) = \mathbf{f} \circ \mathbf{I}$ for all $\mathbf{F} \in X^*$, by the definition of dual map), has matrix representation...

Theorem III.1.B (continued 1)

Proof (continued).

$$[\mathbf{I}]_{\beta}^{\beta'} = \left([\mathbf{I}]_{\beta'}^{\beta} \right)^{-1} = \begin{bmatrix} b_1^1 & b_2^1 & \cdots & b_n^1 \\ b_1^2 & b_2^2 & \cdots & b_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ b_1^n & b_2^n & \cdots & b_n^n \end{bmatrix}^{-1}$$

since $\mathbf{b}'_i = b^j_i \mathbf{b}_j$ by the previous Note (here β and β' are interchanged from the Note). By Theorem III.1.A, the dual map of $\mathbf{I} : X \to X$ (here $\mathbf{I} \in L(X, X)$ maps each vector to itself but matrix $[\mathbf{I}]^{\beta'}_{\beta}$ allows us to represent this map as a conversion of coordinate vectors with respect to β to coordinate vectors with respect to β'), $\mathbf{I}^* : X^* \to X^*$ (satisfying $\mathbf{I}^*(\mathbf{f}) = \mathbf{f} \circ \mathbf{I}$ for all $\mathbf{F} \in X^*$, by the definition of dual map), has matrix representation...

Theorem III.1.B (continued 2)

Proof (continued).

$$\left[\mathbf{I}^{*}\right]_{\beta^{*}}^{\beta^{*}*} = \left(\left[\mathbf{I}\right]_{\beta^{\prime}}^{\beta}\right)^{T} = \begin{bmatrix} b_{1}^{1} & b_{1}^{2} & \cdots & b_{1}^{n} \\ b_{2}^{1} & b_{2}^{2} & \cdots & b_{2}^{n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n}^{1} & b_{n}^{2} & \cdots & b_{n}^{n} \end{bmatrix}.$$

So for $\mathbf{f} \in X^*$ where

$$\mathbf{f} = \sum_{i=1}^{n} f_i \mathbf{b}^i = f_i \mathbf{b}^i = \sum_{i=1}^{n} f_i' \mathbf{b}'^i = f_i \mathbf{b}'^i$$

(so that the coordinate [row] vectors of **f** are (f_1, f_2, \ldots, f_n) and $(f'_1, f'_2, \ldots, f'_n)$ with respect to ordered bases β^* and β'^* , respectively), we have...

()

Theorem III.1.B

Theorem III.1.B (continued 3)

Proof (continued).

$$\begin{bmatrix} f_1' \\ f_2' \\ \vdots \\ f_n' \end{bmatrix} = \begin{bmatrix} b_1^1 & b_1^2 & \cdots & b_1^n \\ b_2^1 & b_2^2 & \cdots & b_2^n \\ \vdots & \vdots & \ddots & \vdots \\ b_n^1 & b_n^2 & \cdots & b_n^n \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix} = \begin{bmatrix} b_1^j f_j \\ b_2^j f_j \\ \vdots \\ b_n^j f_j \end{bmatrix},$$

so that $f'_i = b^j_i f_j$, as claimed.