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Lemma III.1.04

Lemma III.1.04

Lemma III.1.04. Let X be an n-dimensional real vector space with dual
space X ∗. Then dim(X ∗) = dim(X ).

Proof. Let β = {b1,b2, . . . ,bn} be a basis for X . For x ∈ X where
x = a1b1 + a2b2 + · · · anbn = aibi , define the n linear functionals

bi : X → R as bi (x) = ai for i = 1, 2, . . . , n.

For any linear functional f ∈ X ∗, there is a matrix [f] representing f based
on bases β of X and basis {ei} of R (see “Theorem 3.10. Matrix
Representation of Linear Transformations” in my online notes for 3.4.
Linear Transformations for Linear Algebra [MATH 2010]). Notice that [f]
is q × n. Let the jth column of [f] be the scalar f 1

j so that

[f] = [f 1
1 , f 1

2 , . . . , f 1
n ].
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Lemma III.1.04

Lemma III.1.04 (continued)

Lemma III.1.04. Let X be an n-dimensional real vector space with dual
space X ∗. Then dim(X ∗) = dim(X ).

Proof (continued). Then

[f] = [f 1
1 , f − 21, . . . , f 1

n ]

= f 1
1 [1, 0, . . . , 0] + f 1

2 [0, 1, 0, . . . , 0] + · · ·+ f 1
n [0, 0, . . . , 0, 1]

= f 1
1 [b1] + f 1

2 [b2] + · · ·+ f 1
n [bn] since the 1× n matrices in the

previous line represent the functionals in β

= f 1
j [bj ] using the Einstein summation convention

= [f 1
j bj ].

Now the choice of the f 1
j for j = 1, 2, . . . , n is unique since f 1

j = f(bj) for
j = 1, 2, . . . , n. So the representation of F ∈ X ∗ as a linear combination of
b1,b2, . . . ,bn is unique and hence β∗ = {b1,b2, . . . ,bn} is a basis for X ∗.
Therefore dim(X ∗) = n = dim(X ).
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Lemma III.1.04

Lemma III.1.04 (continued)
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Lemma III.1.A

Lemma III.1.A

Lemma III.1.A. Given a linear functional f ∈ X ∗ where X = R, there is
y ∈ Rn such that f(x) = 〈x, y〉 (the inner product on Rn), and conversely
for each y ∈ Rn the mapping x 7→ 〈x, y〉 is a linear functional in X ∗. That
is, X ∗ is isomorphic to Rn when X = Rn.

Proof. Let f ∈ X ∗ = (Rn)∗. Let {e1, e2, . . . , en} be the standard basis of
X = Rn and define y ∈ R as y = f(ei )e1 + f(e2)e2 + · · ·+ f(en)en. Then
for = x1e1 + x2e2 + · · ·+ xnen) we have

f(x) = f(x1e1 + x2e2) + · · ·+ xnen)

= x1f(e1) + x2f(e2) + · · · xnf(en) since f is linear

= 〈[x1, x2, . . . , xn], [f(e1), f(e2), . . . , f(en)]〉
= 〈x, y〉,

as claimed.
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Lemma III.1.A

Lemma III.1.A (continued)

Lemma III.1.A. Given a linear functional f ∈ X ∗ where X = R, there is
y ∈ Rn such that f(x) = 〈x, y〉 (the inner product on Rn), and conversely
for each y ∈ Rn the mapping x 7→ 〈x, y〉 is a linear functional in X ∗. That
is, X ∗ is isomorphic to Rn when X = Rn.

Proof (continued). Conversely, for given y ∈ Rn, the mapping x 7→ 〈x, y〉
is a functional and is linear since for scalars a, b ∈ R we have
〈ax + bz, y〉 = a〈x, y〉+ b〈z, y〉. So the mapping x 7→ 〈x, y is a linear
functional for each y ∈ Rn. Therefore X ∗ = (Rn)∗ ∼= Rn = X under the
vector space isomorphism f 7→ 〈·, y〉 where fx = 〈x, y〉.
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Theorem III.1.A

Theorem III.1.A

Theorem III.1.A. Let β = {b1,b2, . . . ,bn} be a basis for X and
β′ = {b′1,b′2, . . . ,b′m} be a basis for Y such that the m × n matrix

A = [A]β
′

β represents a linear transformation from X to Y with respect to
ordered bases β and β′. Let β∗ and β′ ∗ be the dual bases of X ∗ and Y ∗,

respectively. Then the n ×m matrix A∗ = [A∗]β
∗

β′ ∗ =
(
[A]β

′

β

)t
, where t

represents the transpose operator on a matrix.

Proof. Let f ∈ Y ∗ where f = f1b′ 1 + f2b′ 2 + · · ·+ fmb′m where
β′ ∗ = {b′ 1,b′ 2, . . . ,b′m is the dual basis of Y ∗, so that f = fjb

′ j with the
Einstein summation convention. Then A∗f = A∗(fjb

′ j) ∈ X ∗. Hence
applying these functionals in X ∗ to the elements of basis β of X gives. . .
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Theorem III.1.A

Theorem III.1.A (continued 1)

Proof (continued).

(A∗F)bi = (A∗(fjbi = fj(A
∗b′ j)bi since scalars commute

= fj(b
′ jA)bi by the definition of dual map A∗ (here f ∈ Y ∗

of the definition is replaced with b′ j ∈ β′ j ⊂ Y ∗)

= fjb
′j(Abi ) by associativity

= fjb
′j(A(0, 0, . . . , 0, 1, 0, . . . , 0)t) since the coordinate vector

of bi with respect to the ordered basis β is

(0, 0, . . . , 0, 1, 0, . . . , 0) and matrix A represents

A : X → Y with respect to ordered bases β and β′

= fjb
′ j(a1

i , a
2
i , . . . , a

m
i )t since the matrix product produces the

ith column of A, which is a vector in Y and this column

vector is in coordinates with respect to ordered basis

β′ = {b′1,b′2, . . . ,b′m} of Y . . .
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Theorem III.1.A

Theorem III.1.A (continued 2)

Proof (continued).

(A∗F)bi = fjb
′ j(a1

i , a
2
i , . . . , a

m
i )t

= fja
j
i by the definition of dual basis vector b′ j : Y → R

(or since the coordinate vector in the previous line represents

ak
i b

′
k and b′ jb′k = δi

k by Note III.1.A). (∗)

Now A∗f : X → R, so A∗f ∈ X ∗ and can be written in terms of the dual
basis β∗ = {b1,b2, . . . ,bn}. In doing so, say A∗f = ckb

k , we have by (∗)
that

fja
j
i = (A∗f)bi = (ckb

k)bi = ckδk
i (by Note III.1.A)

so that ci = fja
j
i for i = 1, 2, . . . , n.

Hence A∗f = fja
j
ib

i and the
coordinate vector of A∗f with respect to ordered basis
β∗ = {b1,b2, . . . ,bn} is (fja

j
1, fja

j
2, . . . , fja

j
n). But applying At to

f = (f1, f − 2, . . . , fm) (the coordinate vector of f ∈ Y ∗ with respect to
dual basis β′ ∗ = {b′ 1,b′ 2, . . . ,b′m}) gives. . .
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Theorem III.1.A

Theorem III.1.A (continued 3)

Proof (continued).
a1
1 a1

2 · · · a1
n

a2
1 a2

2 · · · a2
n

...
...

. . .
...

am
1 am

2 · · · am
n


T 

f1
f2
...

fm

 =


a1
1 a2

1 · · · am
1

a1
2 a2

2 · · · am
2

...
...

. . .
...

a1
n a2

n · · · am
n




f1
f2
...

fm



=


a1
1f1 + a2

1f2 + · · ·+ am
1 fm

a1
2f1 + a2

2f2 + · · ·+ am
2 fm

...
a1
nf1 + a2

nf2 + · · ·+ am
n fm

 =


fja

j
1

fja
j
2

...

fja
j
n

 .

Therefore, the n ×m matrix At =
(
[A]β

′

β

)t
has the same effect as the

dual map A∗ : Y ∗ → X ∗ with respect to the ordered bases β′ ∗ and β∗.

That is, [A∗]β
∗

β′ ∗ =
(
[A]β

′

β

)t
, as claimed.
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Theorem III.1.A (continued 3)

Proof (continued).
a1
1 a1

2 · · · a1
n

a2
1 a2

2 · · · a2
n

...
...

. . .
...

am
1 am

2 · · · am
n


T 

f1
f2
...

fm

 =


a1
1 a2

1 · · · am
1

a1
2 a2

2 · · · am
2

...
...

. . .
...

a1
n a2

n · · · am
n




f1
f2
...

fm



=


a1
1f1 + a2

1f2 + · · ·+ am
1 fm

a1
2f1 + a2

2f2 + · · ·+ am
2 fm

...
a1
nf1 + a2

nf2 + · · ·+ am
n fm

 =


fja

j
1

fja
j
2

...

fja
j
n

 .

Therefore, the n ×m matrix At =
(
[A]β

′

β

)t
has the same effect as the

dual map A∗ : Y ∗ → X ∗ with respect to the ordered bases β′ ∗ and β∗.

That is, [A∗]β
∗

β′ ∗ =
(
[A]β

′

β

)t
, as claimed.

() Differential Geometry May 12, 2019 10 / 14



Theorem III.1.B

Theorem III.1.B

Theorem III.1.B. Let β = {b1,b2, . . . ,bn} and β′ = {b′1,b′2, . . . ,b′n} be
bases for X and let β∗ = {b1,b2, . . . ,bn} be the dual basis of β (so that
β∗ is a basis of X ∗). With β′ ∗ = {b′ 1,b′ 2, . . . ,b′ n} the dual basis of β′,
for f ∈ X ∗ where

f =
n∑

i=1

fib
i = fib

i =
n∑

i=1

f ′i b
′ i = f ′i b

′ i

we have f ′i = bj
i fj where the bj

i are coordinates of b′i ∈ β′ with respect to

ordered basis β (that is, bj
i satisfies b′i =

∑n
j=1 bj

i bj = bj
i bj).

Proof. The matrix which converts coordinate vectors with respect to
ordered basis β to coordinate vectors with respect to ordered basis β′ is . . .
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Theorem III.1.B

Theorem III.1.B (continued 1)

Proof (continued).

[I]β
′

β =
(
[I]ββ′

)−1
=


b1
1 b1

2 · · · b1
n

b2
1 b2

2 · · · b2
n

...
...

. . .
...

bn
1 bn

2 · · · bn
n


−1

since b′i = bj
i bj by the previous Note (here β and β′ are interchanged from

the Note). By Theorem III.1.A, the dual map of I : X → X (here

I ∈ L(X ,X ) maps each vector to itself but matrix [I]β
′

β allows us to
represent this map as a conversion of coordinate vectors with respect to β
to coordinate vectors with respect to β′), I∗ : X ∗ → X ∗ (satisfying
I∗(f) = f ◦ I for all F ∈ X ∗, by the definition of dual map), has matrix
representation. . .
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Theorem III.1.B (continued 1)
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Theorem III.1.B

Theorem III.1.B (continued 2)

Proof (continued).

[I∗]β
′ ∗

β∗ =
(
[I]ββ′

)T
=


b1
1 b2

1 · · · bn
1

b1
2 b2

2 · · · bn
2

...
...

. . .
...

b1
n b2

n · · · bn
n

 .

So for f ∈ X ∗ where

f =
n∑

i=1

fib
i = fib

i =
n∑

i=1

f ′i b
′ i = fib

′ i

(so that the coordinate [row] vectors of f are (f1, f2, . . . , fn) and
(f ′1 , f

′
2 , . . . , f

′
n) with respect to ordered bases β∗ and β′ ∗, respectively), we

have. . .
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Theorem III.1.B

Theorem III.1.B (continued 3)

Proof (continued).
f ′1
f ′2
...
f ′n

 =


b1
1 b2

1 · · · bn
1

b1
2 b2

2 · · · bn
2

...
...

. . .
...

b1
n b2

n · · · bn
n




f1
f2
...
fn

 =


bj
1fj

bj
2fj
...

bj
nfj

 ,

so that f ′i = bj
i fj , as claimed.
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