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Lemma IV.1.A

Lemma IV.1.A. For || - || a norm on vector space X, we have ||0| = 0 and
for all x € X that ||x|| > 0.
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Lemma IV.1.A

Lemma IV.1.A

Lemma IV.1.A. For || - || a norm on vector space X, we have ||0| = 0 and
for all x € X that ||x|| > 0.

Proof. By (N ii) we have for a = 2 that ||0|| = ||02]] = |2]|||0|| = 2||0]| and
so ||0]| = 0.
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Lemma IV.1.A
Lemma IV.1.A. For || - || a norm on vector space X, we have ||0| = 0 and
for all x € X that ||x|| > 0.

Proof. By (N ii) we have for a = 2 that ||0|| = ||02]] = |2]|||0|| = 2||0]| and
so ||0]| = 0.

ASSUME that for some x € X we have ||x|| < 0. Then by (N ii) with
a = —1 we have

[ = x|l = lIx(=1)[| = [ = 1[]x]] = [[x]| <.
Then by the Triangle Inequality (N iii),
0[] = [lx = x| = lIx +x(=1)[| < [[x]| + Ix(=1)[| = 2[}x]| < O.

But ||0|| = 0 as shown above, so this is a CONTRADICTION. Hence the
assumption is false and we have ||x|| > 0 for all x € X, as claimed. O
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Lemma IV.1.07. Schwarz's Inequality

Lemma IV.1.07. Schwarz's Inequality

Lemma IV.1.07. Schwarz’s Inequality.

In any inner product space (X, G) (with positive definite G) we have for all
X,y € X that x -y < |x|]y| with equality for nonzero x and y if y = xa for
some a € R, and if y = xa for some a > 0 then equality holds.
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Lemma IV.1.07. Schwarz's Inequality
Lemma IV.1.07. Schwarz’s Inequality.
In any inner product space (X, G) (with positive definite G) we have for all

X,y € X that x -y < |x|]y| with equality for nonzero x and y if y = xa for
some a € R, and if y = xa for some a > 0 then equality holds.

Proof. For any a € R we have by linearity and symmetry of an inner
product

(xa—y,xa—y) =xa-xa—y-xa—xa-y+y-y = (x-x)a’— (2x-y)a+(y-y).

Since G is positive definite, then (x - x)a> — (2x-y)a+ (y-y) > 0 for
aceR.
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Lemma IV.1.07. Schwarz's Inequality

Lemma IV.1.07. Schwarz’s Inequality.

In any inner product space (X, G) (with positive definite G) we have for all
X,y € X that x -y < |x|]y| with equality for nonzero x and y if y = xa for
some a € R, and if y = xa for some a > 0 then equality holds.

Proof. For any a € R we have by linearity and symmetry of an inner
product

(xa—y,xa—y) =xa-xa—y-xa—xa-y+y-y = (x-x)a’— (2x-y)a+(y-y).

Since G is positive definite, then (x - x)a> — (2x-y)a+ (y-y) > 0 for

a € R. Therefore the quadratic equation (x - x)a? — (2x-y)a+ (y-y) =0
cannot have distinct real roots (for the quadratic would then be negative
between the two real roots), hence the discriminant must be nonpositive:
(2x - y)? — 4(x - x)(y - y) < 0. This implies (x-y)? < (x-x)(y - y) and
[(x-y)[ =/ (x-y)* < Vx-xyy-y, soxy < [x-y| < [|x[|[|y]], as claimed.
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Lemma IV.1.07 (continued)

Lemma IV.1.07. Schwarz's Inequality.

In any inner product space (X, G) (with positive definite G) we have for all
X,y € X that x -y < |x|]y| with equality for nonzero x and y if y = xa for
some a € R, and if y = xa for some a > 0 then equality holds.
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Lemma IV.1.07 (continued)

Lemma IV.1.07. Schwarz's Inequality.

In any inner product space (X, G) (with positive definite G) we have for all
X,y € X that x -y < |x|]y| with equality for nonzero x and y if y = xa for
some a € R, and if y = xa for some a > 0 then equality holds.

Proof (continued). Next, for x - y = ||x||||y, the quadratic equation has
I(x-y) _ x-y

2(x %) |x|2
have (xa —y) - (xa=1y) = 0. Since the inner product is positive definite
(or negative definite, say) then xa—y =0 or y = xa.

one real root (namely, a = ) and for this value of a we
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Lemma IV.1.07 (continued)

Lemma IV.1.07. Schwarz's Inequality.

In any inner product space (X, G) (with positive definite G) we have for all
X,y € X that x -y < |x|]y| with equality for nonzero x and y if y = xa for
some a € R, and if y = xa for some a > 0 then equality holds.

Proof (continued). Next, for x - y = ||x||||y, the quadratic equation has
1(x-y) _ x-y

2(x %) |x|2
have (xa —y) - (xa=1y) = 0. Since the inner product is positive definite
(or negative definite, say) then xa —y = 0 or y = xa. Finally, if y = xa for
some a > 0, then

one real root (namely, a = ) and for this value of a we

Xy =x-(xa) = a(x-x) = a|[x||* = [|x|| = xal| = |x][ly.

O
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Theorem 1V.1.09

Theorem 1V.1.09. For any non-degenerate bilinear form F on a vector
space X, the map F| : X — X* defined as F|(x) = x* where
x*(y) = F(x,y), is linear and an isomorphism.
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Theorem 1V.1.09
Theorem 1V.1.09. For any non-degenerate bilinear form F on a vector

space X, the map F| : X — X* defined as F|(x) = x* where
x*(y) = F(x,y), is linear and an isomorphism.

Proof. For any x,x',y € X and a € R,
Fix+x))(Y) = (x+x)"(y) =F(x+xy)
= F(x,y) + F(x',y) since F is bilinear
= x(y) + (x)"(y) = FL(x)(y) + FL(x')(y)
= (FL() + Fi())(y)i
that is F|(x +x') = F (x + F(X/).
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Theorem 1V.1.09

Theorem 1V.1.09. For any non-degenerate bilinear form F on a vector
space X, the map F| : X — X* defined as F|(x) = x* where
x*(y) = F(x,y), is linear and an isomorphism.
Proof. For any x,x',y € X and a € R,
Fix+x))(Y) = (x+x)"(y) =F(x+xy)
= F(x,y) + F(x',y) since F is bilinear
= x"(y) + (X)"(y) = FL(x)(y) + FL(xX)(y)
= (Fi(x) + FL(<))(y):
that is F|(x +x') = F (x + F|(x'). Also,
F(xa)(y) = (xa)*(y) = (xa) -y = F(xa,y)
= aF(x,y) since F is bilinear
= a(x-y) = a(x(y)) = a(F (x)(y)) = (aF ,(x))(y);
that is F|(Xa) = (F|(x))a. Hence F| is linear.
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Theorem 1V.1.09 (continued)

Proof (continued). Suppose F|(x)(y) = 0 for all y € X; that is,

F|(x) =0. Then for all y € X, F|(x)(y) = x*(y) = F(x,y) = 0 and since
F is non-degenerate by hypothesis then x = 0. So

ker(F|) = {x € X | F|(x) =0} = {0}.
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Theorem 1V.1.09 (continued)

Proof (continued). Suppose F|(x)(y) = 0 for all y € X; that is,

F|(x) =0. Then for all y € X, F|(x)(y) = x*(y) = F(x,y) = 0 and since
F is non-degenerate by hypothesis then x = 0. So

ker(F|) = {x € X | F|(x) =0} = {0}. So dim(ker(F})) = nullity(F;) =0
and by the Rank-Nullity Equation (see “Theorem 2.5. Rank Equation” in
my online note for Linear Algebra [MATH 2010] on “2.2. The Rank of a
Matrix,” or Theorem 1.2.10 of the Dodson and Poston) we have
dim(Im(F,)) = dim(ker(F})) + dim(Im(F)) where

dim(Im(F|)) = dim(F X). So dim(F;X) = dim(X) = dim(X*) (by
Lemma 111.1.04) and hence F| X = X* (since X and X* are finite
dimensional). That is, F| is onto (surjective), one to one (injective; since
dim(ker(F)) = 0), and linear. That is, F| is an isomorphism, as

claimed. O]

Differential Geometry May 5,201 7/8


http://faculty.etsu.edu/gardnerr/2010/c2s2.pdf
http://faculty.etsu.edu/gardnerr/2010/c2s2.pdf

Lemma IV.1.11

Lemma IV.1.11

Lemma IV.1.11. A non-degenerate bilinear form F on a vector space X
induces a bilinear form F* on X* by

F*(f.g) = F(F(f),F1(g))
which is non-degenerate. In addition, if F is

symmetric/anti-symmetric/positive definite/negative definite/indefinite
then so is F*.
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Lemma IV.1.11

Lemma IV.1.11

Lemma IV.1.11. A non-degenerate bilinear form F on a vector space X
induces a bilinear form F* on X* by

F*(f.g) = F(F(f),F1(g))
which is non-degenerate. In addition, if F is

symmetric/anti-symmetric/positive definite/negative definite/indefinite
then so is F*.

Proof. Since F is bilinear (i.e., linear in both positions) then F* is bilinear.
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Lemma IV.1.11

Lemma IV.1.11. A non-degenerate bilinear form F on a vector space X
induces a bilinear form F* on X* by

F*(f,g) = F(F:(f), F1(g))

which is non-degenerate. In addition, if F is
symmetric/anti-symmetric/positive definite/negative definite/indefinite
then so is F*.

Proof. Since F is bilinear (i.e., linear in both positions) then F* is bilinear.

Suppose F is non-degenerate. Let f € X* be such that F*(F,g) = 0 for all
g € X*. Then F*(F,g) = F(F(f),F;(g)) = 0 for all g € X*. Since

F; : X* — X is onto, then we can equivalently say F(F¢(f),y) = 0 for all
y € X (we take y = F;(g)). Since F is non-degenerate, this implies

F;(f) = 0 and since F; is linear and one to one, this implies that f = 0.
Therefore F; is non-degenerate, as claimed.
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Lemma IV.1.11

Lemma IV.1.11. A non-degenerate bilinear form F on a vector space X
induces a bilinear form F* on X* by

F*(f,g) = F(F:(f), F1(g))

which is non-degenerate. In addition, if F is
symmetric/anti-symmetric/positive definite/negative definite/indefinite
then so is F*.

Proof. Since F is bilinear (i.e., linear in both positions) then F* is bilinear.

Suppose F is non-degenerate. Let f € X* be such that F*(F,g) = 0 for all
g € X*. Then F*(F,g) = F(F(f),F;(g)) = 0 for all g € X*. Since

F; : X* — X is onto, then we can equivalently say F(F¢(f),y) = 0 for all
y € X (we take y = F;(g)). Since F is non-degenerate, this implies

F;(f) = 0 and since F; is linear and one to one, this implies that f = 0.
Therefore F; is non-degenerate, as claimed.

The claims about symmetry/etc. are to be shown in Exercise IV.1.8. 0J
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