Differential Geometry

Chapter IV. Metric Vector Spaces IV.1. Metrics—Proofs of Theorems

- 2 Lemma IV.1.07. Schwarz's Inequality
- 3 Theorem IV.1.09

Lemma IV.1.A. For $\|\cdot\|$ a norm on vector space X, we have $\|\mathbf{0}\| = 0$ and for all $\mathbf{x} \in X$ that $\|\mathbf{x}\| \ge 0$.

Proof. By (N ii) we have for a = 2 that $||\mathbf{0}|| = ||\mathbf{0}2|| = |2|||\mathbf{0}|| = 2||\mathbf{0}||$ and so $||\mathbf{0}|| = 0$.

Lemma IV.1.A. For $\|\cdot\|$ a norm on vector space X, we have $\|\mathbf{0}\| = 0$ and for all $\mathbf{x} \in X$ that $\|\mathbf{x}\| \ge 0$.

Proof. By (N ii) we have for a = 2 that $||\mathbf{0}|| = ||\mathbf{0}2|| = |2|||\mathbf{0}|| = 2||\mathbf{0}||$ and so $||\mathbf{0}|| = 0$.

ASSUME that for some $\mathbf{x} \in X$ we have $\|\mathbf{x}\| < 0$. Then by (N ii) with a = -1 we have

$$\|-\mathbf{x}\| = \|\mathbf{x}(-1)\| = |-1|\|\mathbf{x}\| = \|\mathbf{x}\| < 0.$$

Then by the Triangle Inequality (N iii),

 $\|\mathbf{0}\| = \|\mathbf{x} - \mathbf{x}\| = \|\mathbf{x} + \mathbf{x}(-1)\| \le \|\mathbf{x}\| + \|\mathbf{x}(-1)\| = 2\|\mathbf{x}\| < 0.$

But $\|\mathbf{0}\| = 0$ as shown above, so this is a CONTRADICTION. Hence the assumption is false and we have $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in X$, as claimed.

Lemma IV.1.A. For $\|\cdot\|$ a norm on vector space X, we have $\|\mathbf{0}\| = 0$ and for all $\mathbf{x} \in X$ that $\|\mathbf{x}\| \ge 0$.

Proof. By (N ii) we have for a = 2 that $||\mathbf{0}|| = ||\mathbf{0}2|| = |2|||\mathbf{0}|| = 2||\mathbf{0}||$ and so $||\mathbf{0}|| = 0$.

ASSUME that for some $\mathbf{x} \in X$ we have $\|\mathbf{x}\| < 0$. Then by (N ii) with a = -1 we have

$$|-\mathbf{x}|| = ||\mathbf{x}(-1)|| = |-1|||\mathbf{x}|| = ||\mathbf{x}|| < 0.$$

Then by the Triangle Inequality (N iii),

$$\|\mathbf{0}\| = \|\mathbf{x} - \mathbf{x}\| = \|\mathbf{x} + \mathbf{x}(-1)\| \le \|\mathbf{x}\| + \|\mathbf{x}(-1)\| = 2\|\mathbf{x}\| < 0.$$

But $\|\mathbf{0}\| = 0$ as shown above, so this is a CONTRADICTION. Hence the assumption is false and we have $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in X$, as claimed.

Lemma IV.1.07. Schwarz's Inequality

Lemma IV.1.07. Schwarz's Inequality.

In any inner product space (X, \mathbf{G}) (with positive definite \mathbf{G}) we have for all $\mathbf{x}, \mathbf{y} \in X$ that $\mathbf{x} \cdot \mathbf{y} \leq |\mathbf{x}| |\mathbf{y}|$ with equality for nonzero \mathbf{x} and \mathbf{y} if $\mathbf{y} = \mathbf{x}a$ for some $a \in \mathbb{R}$, and if $\mathbf{y} = \mathbf{x}a$ for some $a \geq 0$ then equality holds.

Proof. For any $a \in \mathbb{R}$ we have by linearity and symmetry of an inner product

$$(\mathbf{x}a - \mathbf{y}, \mathbf{x}a - \mathbf{y}) = \mathbf{x}a \cdot \mathbf{x}a - \mathbf{y} \cdot \mathbf{x}a - \mathbf{x}a \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{y} = (\mathbf{x} \cdot \mathbf{x})a^2 - (2\mathbf{x} \cdot \mathbf{y})a + (\mathbf{y} \cdot \mathbf{y}).$$

Since **G** is positive definite, then $(\mathbf{x} \cdot \mathbf{x})a^2 - (2\mathbf{x} \cdot \mathbf{y})a + (\mathbf{y} \cdot \mathbf{y}) \ge 0$ for $a \in \mathbb{R}$.

Lemma IV.1.07. Schwarz's Inequality

Lemma IV.1.07. Schwarz's Inequality.

In any inner product space (X, \mathbf{G}) (with positive definite \mathbf{G}) we have for all $\mathbf{x}, \mathbf{y} \in X$ that $\mathbf{x} \cdot \mathbf{y} \leq |\mathbf{x}| |\mathbf{y}|$ with equality for nonzero \mathbf{x} and \mathbf{y} if $\mathbf{y} = \mathbf{x}a$ for some $a \in \mathbb{R}$, and if $\mathbf{y} = \mathbf{x}a$ for some $a \geq 0$ then equality holds.

Proof. For any $a \in \mathbb{R}$ we have by linearity and symmetry of an inner product

$$(\mathbf{x}a-\mathbf{y},\mathbf{x}a-\mathbf{y})=\mathbf{x}a\cdot\mathbf{x}a-\mathbf{y}\cdot\mathbf{x}a-\mathbf{x}a\cdot\mathbf{y}+\mathbf{y}\cdot\mathbf{y}=(\mathbf{x}\cdot\mathbf{x})a^2-(2\mathbf{x}\cdot\mathbf{y})a+(\mathbf{y}\cdot\mathbf{y}).$$

Since **G** is positive definite, then $(\mathbf{x} \cdot \mathbf{x})a^2 - (2\mathbf{x} \cdot \mathbf{y})a + (\mathbf{y} \cdot \mathbf{y}) \ge 0$ for $a \in \mathbb{R}$. Therefore the quadratic equation $(\mathbf{x} \cdot \mathbf{x})a^2 - (2\mathbf{x} \cdot \mathbf{y})a + (\mathbf{y} \cdot \mathbf{y}) = 0$ cannot have distinct real roots (for the quadratic would then be negative between the two real roots), hence the discriminant must be nonpositive: $(2\mathbf{x} \cdot \mathbf{y})^2 - 4(\mathbf{x} \cdot \mathbf{x})(\mathbf{y} \cdot \mathbf{y}) \le 0$. This implies $(\mathbf{x} \cdot \mathbf{y})^2 \le (\mathbf{x} \cdot \mathbf{x})(\mathbf{y} \cdot \mathbf{y})$ and $|(\mathbf{x} \cdot \mathbf{y})| = \sqrt{(\mathbf{x} \cdot \mathbf{y})^2} \le \sqrt{\mathbf{x} \cdot \mathbf{x}}\sqrt{\mathbf{y} \cdot \mathbf{y}}$, so $\mathbf{x} \cdot \mathbf{y} \le |\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}|||\mathbf{y}||$, as claimed.

Lemma IV.1.07. Schwarz's Inequality

Lemma IV.1.07. Schwarz's Inequality.

In any inner product space (X, \mathbf{G}) (with positive definite \mathbf{G}) we have for all $\mathbf{x}, \mathbf{y} \in X$ that $\mathbf{x} \cdot \mathbf{y} \leq |\mathbf{x}| |\mathbf{y}|$ with equality for nonzero \mathbf{x} and \mathbf{y} if $\mathbf{y} = \mathbf{x}a$ for some $a \in \mathbb{R}$, and if $\mathbf{y} = \mathbf{x}a$ for some $a \geq 0$ then equality holds.

Proof. For any $a \in \mathbb{R}$ we have by linearity and symmetry of an inner product

$$(\mathbf{x}a-\mathbf{y},\mathbf{x}a-\mathbf{y})=\mathbf{x}a\cdot\mathbf{x}a-\mathbf{y}\cdot\mathbf{x}a-\mathbf{x}a\cdot\mathbf{y}+\mathbf{y}\cdot\mathbf{y}=(\mathbf{x}\cdot\mathbf{x})a^2-(2\mathbf{x}\cdot\mathbf{y})a+(\mathbf{y}\cdot\mathbf{y}).$$

Since **G** is positive definite, then $(\mathbf{x} \cdot \mathbf{x})a^2 - (2\mathbf{x} \cdot \mathbf{y})a + (\mathbf{y} \cdot \mathbf{y}) \ge 0$ for $a \in \mathbb{R}$. Therefore the quadratic equation $(\mathbf{x} \cdot \mathbf{x})a^2 - (2\mathbf{x} \cdot \mathbf{y})a + (\mathbf{y} \cdot \mathbf{y}) = 0$ cannot have distinct real roots (for the quadratic would then be negative between the two real roots), hence the discriminant must be nonpositive: $(2\mathbf{x} \cdot \mathbf{y})^2 - 4(\mathbf{x} \cdot \mathbf{x})(\mathbf{y} \cdot \mathbf{y}) \le 0$. This implies $(\mathbf{x} \cdot \mathbf{y})^2 \le (\mathbf{x} \cdot \mathbf{x})(\mathbf{y} \cdot \mathbf{y})$ and $|(\mathbf{x} \cdot \mathbf{y})| = \sqrt{(\mathbf{x} \cdot \mathbf{y})^2} \le \sqrt{\mathbf{x} \cdot \mathbf{x}}\sqrt{\mathbf{y} \cdot \mathbf{y}}$, so $\mathbf{x} \cdot \mathbf{y} \le |\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| ||\mathbf{y}||$, as claimed.

Lemma IV.1.07 (continued)

Lemma IV.1.07. Schwarz's Inequality.

In any inner product space (X, \mathbf{G}) (with positive definite \mathbf{G}) we have for all $\mathbf{x}, \mathbf{y} \in X$ that $\mathbf{x} \cdot \mathbf{y} \leq |\mathbf{x}| |\mathbf{y}|$ with equality for nonzero \mathbf{x} and \mathbf{y} if $\mathbf{y} = \mathbf{x}a$ for some $a \in \mathbb{R}$, and if $\mathbf{y} = \mathbf{x}a$ for some $a \geq 0$ then equality holds.

Proof (continued). Next, for $\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}$, the quadratic equation has one real root (namely, $a = \frac{1(\mathbf{x} \cdot \mathbf{y})}{2(\mathbf{x} \cdot \mathbf{x})} = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|^2}$) and for this value of *a* we have $(\mathbf{x}a - \mathbf{y}) \cdot (\mathbf{x}a = \mathbf{y}) = 0$. Since the inner product is positive definite (or negative definite, say) then $\mathbf{x}a - \mathbf{y} = \mathbf{0}$ or $\mathbf{y} = \mathbf{x}a$.

Lemma IV.1.07 (continued)

Lemma IV.1.07. Schwarz's Inequality.

In any inner product space (X, \mathbf{G}) (with positive definite \mathbf{G}) we have for all $\mathbf{x}, \mathbf{y} \in X$ that $\mathbf{x} \cdot \mathbf{y} \leq |\mathbf{x}| |\mathbf{y}|$ with equality for nonzero \mathbf{x} and \mathbf{y} if $\mathbf{y} = \mathbf{x}a$ for some $a \in \mathbb{R}$, and if $\mathbf{y} = \mathbf{x}a$ for some $a \geq 0$ then equality holds.

Proof (continued). Next, for $\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}$, the quadratic equation has one real root (namely, $a = \frac{1(\mathbf{x} \cdot \mathbf{y})}{2(\mathbf{x} \cdot \mathbf{x})} = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|^2}$) and for this value of a we have $(\mathbf{x}a - \mathbf{y}) \cdot (\mathbf{x}a = \mathbf{y}) = 0$. Since the inner product is positive definite (or negative definite, say) then $\mathbf{x}a - \mathbf{y} = \mathbf{0}$ or $\mathbf{y} = \mathbf{x}a$. Finally, if $\mathbf{y} = \mathbf{x}a$ for some $a \ge 0$, then

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot (\mathbf{x}a) = a(\mathbf{x} \cdot \mathbf{x}) = a \|\mathbf{x}\|^2 = \|\mathbf{x}\| = \mathbf{x}a\| = \|\mathbf{x}\|\|\mathbf{y}\|.$$

Lemma IV.1.07 (continued)

Lemma IV.1.07. Schwarz's Inequality.

In any inner product space (X, \mathbf{G}) (with positive definite \mathbf{G}) we have for all $\mathbf{x}, \mathbf{y} \in X$ that $\mathbf{x} \cdot \mathbf{y} \leq |\mathbf{x}| |\mathbf{y}|$ with equality for nonzero \mathbf{x} and \mathbf{y} if $\mathbf{y} = \mathbf{x}a$ for some $a \in \mathbb{R}$, and if $\mathbf{y} = \mathbf{x}a$ for some $a \geq 0$ then equality holds.

Proof (continued). Next, for $\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}$, the quadratic equation has one real root (namely, $a = \frac{1(\mathbf{x} \cdot \mathbf{y})}{2(\mathbf{x} \cdot \mathbf{x})} = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|^2}$) and for this value of a we have $(\mathbf{x}a - \mathbf{y}) \cdot (\mathbf{x}a = \mathbf{y}) = 0$. Since the inner product is positive definite (or negative definite, say) then $\mathbf{x}a - \mathbf{y} = \mathbf{0}$ or $\mathbf{y} = \mathbf{x}a$. Finally, if $\mathbf{y} = \mathbf{x}a$ for some $a \ge 0$, then

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot (\mathbf{x}a) = a(\mathbf{x} \cdot \mathbf{x}) = a \|\mathbf{x}\|^2 = \|\mathbf{x}\| = \mathbf{x}a\| = \|\mathbf{x}\|\|\mathbf{y}\|.$$

Theorem IV.1.09

Theorem IV.1.09. For any non-degenerate bilinear form **F** on a vector space X, the map $\mathbf{F}_{\downarrow} : X \to X^*$ defined as $\mathbf{F}_{\downarrow}(\mathbf{x}) = \mathbf{x}^*$ where $\mathbf{x}^*(\mathbf{y}) = \mathbf{F}(\mathbf{x}, \mathbf{y})$, is linear and an isomorphism.

Proof. For any $\mathbf{x}, \mathbf{x}', \mathbf{y} \in X$ and $a \in \mathbb{R}$, $\begin{aligned}
\mathbf{F}_{\downarrow}(\mathbf{x} + \mathbf{x}'))(\mathbf{Y}) &= (\mathbf{x} + \mathbf{x}')^*(\mathbf{y}) = \mathbf{F}(\mathbf{x} + \mathbf{x}', \mathbf{y}) \\
&= \mathbf{F}(\mathbf{x}, \mathbf{y}) + \mathbf{F}(\mathbf{x}', \mathbf{y}) \text{ since } \mathbf{F} \text{ is bilinear} \\
&= \mathbf{x}^*(\mathbf{y}) + (\mathbf{x}')^*(\mathbf{y}) = \mathbf{F}_{\downarrow}(\mathbf{x})(\mathbf{y}) + \mathbf{F}_{\downarrow}(\mathbf{x}')(\mathbf{y}) \\
&= (\mathbf{F}_{\downarrow}(\mathbf{x}) + \mathbf{F}_{\downarrow}(\mathbf{x}'))(\mathbf{y});
\end{aligned}$

that is $F_{\downarrow}(x + x') = F_{\downarrow}(x + F_{\downarrow}(x'))$.

Theorem IV.1.09

Theorem IV.1.09. For any non-degenerate bilinear form **F** on a vector space X, the map $\mathbf{F}_{\downarrow} : X \to X^*$ defined as $\mathbf{F}_{\downarrow}(\mathbf{x}) = \mathbf{x}^*$ where $\mathbf{x}^*(\mathbf{y}) = \mathbf{F}(\mathbf{x}, \mathbf{y})$, is linear and an isomorphism.

Proof. For any $\mathbf{x}, \mathbf{x}', \mathbf{y} \in X$ and $a \in \mathbb{R}$,

$$\begin{split} \mathsf{F}_{\downarrow}(\mathbf{x} + \mathbf{x}'))(\mathbf{Y}) &= (\mathbf{x} + \mathbf{x}')^*(\mathbf{y}) = \mathsf{F}(\mathbf{x} + \mathbf{x}', \mathbf{y}) \\ &= \mathsf{F}(\mathbf{x}, \mathbf{y}) + \mathsf{F}(\mathbf{x}', \mathbf{y}) \text{ since } \mathsf{F} \text{ is bilinear} \\ &= \mathbf{x}^*(\mathbf{y}) + (\mathbf{x}')^*(\mathbf{y}) = \mathsf{F}_{\downarrow}(\mathbf{x})(\mathbf{y}) + \mathsf{F}_{\downarrow}(\mathbf{x}')(\mathbf{y}) \\ &= (\mathsf{F}_{\downarrow}(\mathbf{x}) + \mathsf{F}_{\downarrow}(\mathbf{x}'))(\mathbf{y}); \end{split}$$

that is $\textbf{F}_{\downarrow}(\textbf{x}+\textbf{x}')=\textbf{F}_{\downarrow}(\textbf{x}+\textbf{F}_{\downarrow}(\textbf{x}').$ Also,

$$\mathbf{F}(\mathbf{x}a)(\mathbf{y}) = (\mathbf{x}a)^*(\mathbf{y}) = (\mathbf{x}a) \cdot \mathbf{y} = \mathbf{F}(\mathbf{x}a, \mathbf{y})$$

 $= a\mathbf{F}(\mathbf{x}, \mathbf{y})$ since **F** is bilinear

 $= a(\mathbf{x} \cdot \mathbf{y}) = a(\mathbf{x}^*(\mathbf{y})) = a(\mathbf{F}_{\downarrow}(\mathbf{x})(\mathbf{y})) = (a\mathbf{F}_{\downarrow}(\mathbf{x}))(\mathbf{y});$

that is $\mathbf{F}_{\downarrow}(\mathbf{X}a) = (\mathbf{F}_{\downarrow}(\mathbf{x}))a$. Hence \mathbf{F}_{\downarrow} is linear.

Theorem IV.1.09

Theorem IV.1.09. For any non-degenerate bilinear form **F** on a vector space X, the map $\mathbf{F}_{\downarrow} : X \to X^*$ defined as $\mathbf{F}_{\downarrow}(\mathbf{x}) = \mathbf{x}^*$ where $\mathbf{x}^*(\mathbf{y}) = \mathbf{F}(\mathbf{x}, \mathbf{y})$, is linear and an isomorphism.

Proof. For any $\mathbf{x}, \mathbf{x}', \mathbf{y} \in X$ and $a \in \mathbb{R}$,

$$\begin{aligned} \mathsf{F}_{\downarrow}(\mathbf{x} + \mathbf{x}'))(\mathsf{Y}) &= (\mathbf{x} + \mathbf{x}')^*(\mathbf{y}) = \mathsf{F}(\mathbf{x} + \mathbf{x}', \mathbf{y}) \\ &= \mathsf{F}(\mathbf{x}, \mathbf{y}) + \mathsf{F}(\mathbf{x}', \mathbf{y}) \text{ since } \mathsf{F} \text{ is bilinear} \\ &= \mathbf{x}^*(\mathbf{y}) + (\mathbf{x}')^*(\mathbf{y}) = \mathsf{F}_{\downarrow}(\mathbf{x})(\mathbf{y}) + \mathsf{F}_{\downarrow}(\mathbf{x}')(\mathbf{y}) \\ &= (\mathsf{F}_{\downarrow}(\mathbf{x}) + \mathsf{F}_{\downarrow}(\mathbf{x}'))(\mathbf{y}); \end{aligned}$$

that is $\textbf{F}_{\downarrow}(\textbf{x}+\textbf{x}')=\textbf{F}_{\downarrow}(\textbf{x}+\textbf{F}_{\downarrow}(\textbf{x}').$ Also,

$$\begin{aligned} \mathsf{F}(\mathsf{x}a)(\mathsf{y}) &= (\mathsf{x}a)^*(\mathsf{y}) = (\mathsf{x}a) \cdot \mathsf{y} = \mathsf{F}(\mathsf{x}a,\mathsf{y}) \\ &= a\mathsf{F}(\mathsf{x},\mathsf{y}) \text{ since } \mathsf{F} \text{ is bilinear} \\ &= a(\mathsf{x}\cdot\mathsf{y}) = a(\mathsf{x}^*(\mathsf{y})) = a(\mathsf{F}_{\downarrow}(\mathsf{x})(\mathsf{y})) = (a\mathsf{F}_{\downarrow}(\mathsf{x}))(\mathsf{y}) \end{aligned}$$

that is $\mathbf{F}_{\downarrow}(\mathbf{X}a) = (\mathbf{F}_{\downarrow}(\mathbf{x}))a$. Hence \mathbf{F}_{\downarrow} is linear.

Theorem IV.1.09 (continued)

Proof (continued). Suppose $F_{\perp}(x)(y) = 0$ for all $y \in X$; that is, $\mathbf{F}_{\perp}(\mathbf{x}) = \mathbf{0}$. Then for all $\mathbf{y} \in X$, $\mathbf{F}_{\perp}(\mathbf{x})(\mathbf{y}) = \mathbf{x}^{*}(\mathbf{y}) = \mathbf{F}(\mathbf{x}, \mathbf{y}) = 0$ and since **F** is non-degenerate by hypothesis then $\mathbf{x} = \mathbf{0}$. So $ker(F_1) = \{x \in X \mid F_1(x) = 0\} = \{0\}$. So $dim(ker(F_1)) = nullity(F_1) = 0$ and by the Rank-Nullity Equation (see "Theorem 2.5. Rank Equation" in my online note for Linear Algebra [MATH 2010] on "2.2. The Rank of a Matrix," or Theorem I.2.10 of the Dodson and Poston) we have $\dim(\operatorname{Im}(\mathbf{F}_{\perp})) = \dim(\ker(\mathbf{F}_{\perp})) + \dim(\operatorname{Im}(\mathbf{F}_{\perp}))$ where $\dim(\operatorname{Im}(\mathbf{F}_1)) = \dim(\mathbf{F}_1X)$. So $\dim(\mathbf{F}_1X) = \dim(X) = \dim(X^*)$ (by Lemma III.1.04) and hence $\mathbf{F}_1 X = X^*$ (since X and X^* are finite dimensional). That is, \mathbf{F}_{\perp} is onto (surjective), one to one (injective; since dim $(ker(\mathbf{F}_{\perp})) = 0$, and linear. That is, \mathbf{F}_{\perp} is an isomorphism, as claimed.

Theorem IV.1.09 (continued)

Proof (continued). Suppose $F_{\perp}(\mathbf{x})(\mathbf{y}) = 0$ for all $\mathbf{y} \in X$; that is, $\mathbf{F}_{\perp}(\mathbf{x}) = \mathbf{0}$. Then for all $\mathbf{y} \in X$, $\mathbf{F}_{\perp}(\mathbf{x})(\mathbf{y}) = \mathbf{x}^{*}(\mathbf{y}) = \mathbf{F}(\mathbf{x}, \mathbf{y}) = 0$ and since **F** is non-degenerate by hypothesis then $\mathbf{x} = \mathbf{0}$. So $\ker(\mathbf{F}_{\perp}) = \{\mathbf{x} \in X \mid \mathbf{F}_{\perp}(\mathbf{x}) = \mathbf{0}\} = \{\mathbf{0}\}.$ So dim $(\ker(\mathbf{F}_{\perp})) = \text{nullity}(\mathbf{F}_{\perp}) = 0$ and by the Rank-Nullity Equation (see "Theorem 2.5. Rank Equation" in my online note for Linear Algebra [MATH 2010] on "2.2. The Rank of a Matrix," or Theorem I.2.10 of the Dodson and Poston) we have $\dim(\operatorname{Im}(\mathbf{F}_{\perp})) = \dim(\ker(\mathbf{F}_{\perp})) + \dim(\operatorname{Im}(\mathbf{F}_{\perp}))$ where $\dim(\operatorname{Im}(\mathbf{F}_{\perp})) = \dim(\mathbf{F}_{\perp}X)$. So $\dim(\mathbf{F}_{\perp}X) = \dim(X) = \dim(X^{*})$ (by Lemma III.1.04) and hence $\mathbf{F}_{\perp}X = X^*$ (since X and X^* are finite dimensional). That is, \mathbf{F}_{\perp} is onto (surjective), one to one (injective; since dim $(ker(\mathbf{F}_{\perp})) = 0$), and linear. That is, \mathbf{F}_{\perp} is an isomorphism, as claimed.

Lemma IV.1.11. A non-degenerate bilinear form \mathbf{F} on a vector space X induces a bilinear form \mathbf{F}^* on X^* by

$$\mathbf{F}^*(\mathbf{f},\mathbf{g})=\mathbf{F}(\mathbf{F}_{\uparrow}(\mathbf{f}),\mathbf{F}_{\uparrow}(\mathbf{g}))$$

which is non-degenerate. In addition, if ${\bf F}$ is symmetric/anti-symmetric/positive definite/negative definite/indefinite then so is ${\bf F}^*.$

Proof. Since F is bilinear (i.e., linear in both positions) then F^* is bilinear.

Lemma IV.1.11. A non-degenerate bilinear form \mathbf{F} on a vector space X induces a bilinear form \mathbf{F}^* on X^* by

$$\mathsf{F}^*(\mathsf{f}, \mathbf{g}) = \mathsf{F}(\mathsf{F}_\uparrow(\mathsf{f}), \mathsf{F}_\uparrow(\mathbf{g}))$$

which is non-degenerate. In addition, if ${\bf F}$ is symmetric/anti-symmetric/positive definite/negative definite/indefinite then so is ${\bf F}^*.$

Proof. Since **F** is bilinear (i.e., linear in both positions) then **F**^{*} is bilinear.

Suppose **F** is non-degenerate. Let $\mathbf{f} \in X^*$ be such that $\mathbf{F}^*(\mathbf{F}, \mathbf{g}) = 0$ for all $\mathbf{g} \in X^*$. Then $\mathbf{F}^*(\mathbf{F}, \mathbf{g}) = \mathbf{F}(\mathbf{F}_{\uparrow}(\mathbf{f}), \mathbf{F}_{\uparrow}(\mathbf{g})) = 0$ for all $\mathbf{g} \in X^*$. Since $\mathbf{F}_{\uparrow} : X^* \to X$ is onto, then we can equivalently say $\mathbf{F}(\mathbf{F}_{\uparrow}(\mathbf{f}), \mathbf{y}) = 0$ for all $\mathbf{y} \in X$ (we take $\mathbf{y} = \mathbf{F}_{\uparrow}(\mathbf{g})$). Since **F** is non-degenerate, this implies $\mathbf{F}_{\uparrow}(\mathbf{f}) = 0$ and since \mathbf{F}_{\uparrow} is linear and one to one, this implies that $\mathbf{f} = \mathbf{0}$. Therefore \mathbf{F}_{\uparrow} is non-degenerate, as claimed.

Lemma IV.1.11. A non-degenerate bilinear form \mathbf{F} on a vector space X induces a bilinear form \mathbf{F}^* on X^* by

$$\mathsf{F}^*(\mathsf{f}, \mathbf{g}) = \mathsf{F}(\mathsf{F}_\uparrow(\mathsf{f}), \mathsf{F}_\uparrow(\mathbf{g}))$$

which is non-degenerate. In addition, if ${\bf F}$ is symmetric/anti-symmetric/positive definite/negative definite/indefinite then so is ${\bf F}^*.$

Proof. Since **F** is bilinear (i.e., linear in both positions) then **F**^{*} is bilinear.

Suppose **F** is non-degenerate. Let $\mathbf{f} \in X^*$ be such that $\mathbf{F}^*(\mathbf{F}, \mathbf{g}) = 0$ for all $\mathbf{g} \in X^*$. Then $\mathbf{F}^*(\mathbf{F}, \mathbf{g}) = \mathbf{F}(\mathbf{F}_{\uparrow}(\mathbf{f}), \mathbf{F}_{\uparrow}(\mathbf{g})) = 0$ for all $\mathbf{g} \in X^*$. Since $\mathbf{F}_{\uparrow} : X^* \to X$ is onto, then we can equivalently say $\mathbf{F}(\mathbf{F}_{\uparrow}(\mathbf{f}), \mathbf{y}) = 0$ for all $\mathbf{y} \in X$ (we take $\mathbf{y} = \mathbf{F}_{\uparrow}(\mathbf{g})$). Since **F** is non-degenerate, this implies $\mathbf{F}_{\uparrow}(\mathbf{f}) = 0$ and since \mathbf{F}_{\uparrow} is linear and one to one, this implies that $\mathbf{f} = \mathbf{0}$. Therefore \mathbf{F}_{\uparrow} is non-degenerate, as claimed.

The claims about symmetry/etc. are to be shown in Exercise IV.1.8.

Lemma IV.1.11. A non-degenerate bilinear form \mathbf{F} on a vector space X induces a bilinear form \mathbf{F}^* on X^* by

$$\mathsf{F}^*(\mathsf{f}, \mathbf{g}) = \mathsf{F}(\mathsf{F}_\uparrow(\mathsf{f}), \mathsf{F}_\uparrow(\mathbf{g}))$$

which is non-degenerate. In addition, if ${\bf F}$ is symmetric/anti-symmetric/positive definite/negative definite/indefinite then so is ${\bf F}^*.$

Proof. Since **F** is bilinear (i.e., linear in both positions) then **F**^{*} is bilinear.

Suppose **F** is non-degenerate. Let $\mathbf{f} \in X^*$ be such that $\mathbf{F}^*(\mathbf{F}, \mathbf{g}) = 0$ for all $\mathbf{g} \in X^*$. Then $\mathbf{F}^*(\mathbf{F}, \mathbf{g}) = \mathbf{F}(\mathbf{F}_{\uparrow}(\mathbf{f}), \mathbf{F}_{\uparrow}(\mathbf{g})) = 0$ for all $\mathbf{g} \in X^*$. Since $\mathbf{F}_{\uparrow} : X^* \to X$ is onto, then we can equivalently say $\mathbf{F}(\mathbf{F}_{\uparrow}(\mathbf{f}), \mathbf{y}) = 0$ for all $\mathbf{y} \in X$ (we take $\mathbf{y} = \mathbf{F}_{\uparrow}(\mathbf{g})$). Since **F** is non-degenerate, this implies $\mathbf{F}_{\uparrow}(\mathbf{f}) = 0$ and since \mathbf{F}_{\uparrow} is linear and one to one, this implies that $\mathbf{f} = \mathbf{0}$. Therefore \mathbf{F}_{\uparrow} is non-degenerate, as claimed.

The claims about symmetry/etc. are to be shown in Exercise IV.1.8.