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Lemma IV.1.A

Lemma IV.1.A

Lemma IV.1.A. For ‖ · ‖ a norm on vector space X , we have ‖0‖ = 0 and
for all x ∈ X that ‖x‖ ≥ 0.

Proof. By (N ii) we have for a = 2 that ‖0‖ = ‖02‖ = |2|‖0‖ = 2‖0‖ and
so ‖0‖ = 0.

ASSUME that for some x ∈ X we have ‖x‖ < 0. Then by (N ii) with
a = −1 we have

‖ − x‖ = ‖x(−1)‖ = | − 1|‖x‖ = ‖x‖ < 0.

Then by the Triangle Inequality (N iii),

‖0‖ = ‖x− x‖ = ‖x + x(−1)‖ ≤ ‖x‖+ ‖x(−1)‖ = 2‖x‖ < 0.

But ‖0‖ = 0 as shown above, so this is a CONTRADICTION. Hence the
assumption is false and we have ‖x‖ ≥ 0 for all x ∈ X , as claimed.
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Lemma IV.1.07. Schwarz’s Inequality

Lemma IV.1.07. Schwarz’s Inequality

Lemma IV.1.07. Schwarz’s Inequality.
In any inner product space (X ,G) (with positive definite G) we have for all
x, y ∈ X that x · y ≤ |x||y| with equality for nonzero x and y if y = xa for
some a ∈ R, and if y = xa for some a ≥ 0 then equality holds.

Proof. For any a ∈ R we have by linearity and symmetry of an inner
product

(xa−y, xa−y) = xa ·xa−y ·xa−xa ·y+y ·y = (x ·x)a2− (2x ·y)a+(y ·y).

Since G is positive definite, then (x · x)a2 − (2x · y)a + (y · y) ≥ 0 for
a ∈ R.

Therefore the quadratic equation (x · x)a2 − (2x · y)a + (y · y) = 0
cannot have distinct real roots (for the quadratic would then be negative
between the two real roots), hence the discriminant must be nonpositive:
(2x · y)2 − 4(x · x)(y · y) ≤ 0. This implies (x · y)2 ≤ (x · x)(y · y) and
|(x · y)| =

√
(x · y)2 ≤

√
x · x√y · y, so x · y ≤ |x · y| ≤ ‖x‖‖y‖, as claimed.
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Lemma IV.1.07. Schwarz’s Inequality

Lemma IV.1.07 (continued)

Lemma IV.1.07. Schwarz’s Inequality.
In any inner product space (X ,G) (with positive definite G) we have for all
x, y ∈ X that x · y ≤ |x||y| with equality for nonzero x and y if y = xa for
some a ∈ R, and if y = xa for some a ≥ 0 then equality holds.

Proof (continued). Next, for x · y = ‖x‖‖y, the quadratic equation has

one real root (namely, a =
1(x · y)

2(x · x)
=

x · y
‖x‖2

) and for this value of a we

have (xa− y) · (xa = y) = 0. Since the inner product is positive definite
(or negative definite, say) then xa− y = 0 or y = xa.

Finally, if y = xa for
some a ≥ 0, then

x · y = x · (xa) = a(x · x) = a‖x‖2 = ‖x‖ = xa‖ = ‖x‖‖y‖.
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Theorem IV.1.09

Theorem IV.1.09

Theorem IV.1.09. For any non-degenerate bilinear form F on a vector
space X , the map F↓ : X → X ∗ defined as F↓(x) = x∗ where
x∗(y) = F(x, y), is linear and an isomorphism.

Proof. For any x, x′, y ∈ X and a ∈ R,

F↓(x + x′))(Y) = (x + x′)∗(y) = F(x + x′, y)

= F(x, y) + F(x′, y) since F is bilinear

= x∗(y) + (x′)∗(y) = F↓(x)(y) + F↓(x
′)(y)

= (F↓(x) + F↓(x
′))(y);

that is F↓(x + x′) = F↓(x + F↓(x
′).

Also,

F(xa)(y) = (xa)∗(y) = (xa) · y = F(xa, y)

= aF(x, y) since F is bilinear

= a(x · y) = a(x∗(y)) = a(F↓(x)(y)) = (aF↓(x))(y);

that is F↓(Xa) = (F↓(x))a. Hence F↓ is linear.
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Theorem IV.1.09

Theorem IV.1.09 (continued)

Proof (continued). Suppose F↓(x)(y) = 0 for all y ∈ X ; that is,
F↓(x) = 0. Then for all y ∈ X , F↓(x)(y) = x∗(y) = F(x, y) = 0 and since
F is non-degenerate by hypothesis then x = 0. So
ker(F↓) = {x ∈ X | F↓(x) = 0} = {0}. So dim(ker(F↓)) = nullity(F↓) = 0
and by the Rank-Nullity Equation (see “Theorem 2.5. Rank Equation” in
my online note for Linear Algebra [MATH 2010] on “2.2. The Rank of a
Matrix,” or Theorem I.2.10 of the Dodson and Poston) we have
dim(Im(F↓)) = dim(ker(F↓)) + dim(Im(F↓)) where
dim(Im(F↓)) = dim(F↓X ). So dim(F↓X ) = dim(X ) = dim(X ∗) (by
Lemma III.1.04) and hence F↓X = X ∗ (since X and X ∗ are finite
dimensional). That is, F↓ is onto (surjective), one to one (injective; since
dim(ker(F↓)) = 0), and linear. That is, F↓ is an isomorphism, as
claimed.
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Lemma IV.1.11

Lemma IV.1.11. A non-degenerate bilinear form F on a vector space X
induces a bilinear form F∗ on X ∗ by

F∗(f, g) = F(F↑(f),F↑(g))

which is non-degenerate. In addition, if F is
symmetric/anti-symmetric/positive definite/negative definite/indefinite
then so is F∗.

Proof. Since F is bilinear (i.e., linear in both positions) then F∗ is bilinear.

Suppose F is non-degenerate. Let f ∈ X ∗ be such that F∗(F, g) = 0 for all
g ∈ X ∗. Then F∗(F, g) = F(F↑(f),F↑(g)) = 0 for all g ∈ X ∗. Since
F↑ : X ∗ → X is onto, then we can equivalently say F(F↑(f), y) = 0 for all
y ∈ X (we take y = F↑(g)). Since F is non-degenerate, this implies
F↑(f) = 0 and since F↑ is linear and one to one, this implies that f = 0.
Therefore F↑ is non-degenerate, as claimed.

The claims about symmetry/etc. are to be shown in Exercise IV.1.8.
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