Differential Geometry

Chapter IV. Metric Vector Spaces IV.2. Maps—Proofs of Theorems

Table of contents

- Theorem IV.2.01
- 2 Corollary IV.2.02
- 3 Lemma IV.2.04
- 4 Corollary IV.2.06
- 5 Lemma IV.2.A
- 6 Lemma IV.2.09
 - 7 Lemma IV.2.11

Theorem IV.2.01

Theorem IV.2.01. Let S be a non-degenerate subspace of a metric vector space X. Then there is a unique linear operator $\mathbf{P} : X \to S$ such that $(\mathbf{x} - \mathbf{R}\mathbf{x}) \cdot \mathbf{y} = 0$ for all $\mathbf{y} \in S$.

Proof. Let **G** be the metric tensor on *X*. Let **G**' be the metric tensor on subspace *S* induced by **G** (so $\mathbf{G}' = \mathbf{G}|_S$). Let $\mathbf{i} : S \to X$ be the inclusion map embedding (the "inclusion map") *S* into *X*. Then the dual map $\mathbf{i}^* : X^* \to S^*$ defined as $\mathbf{i}^*(\mathbf{f}) = \mathbf{f}|_S = \mathbf{f} \circ \mathbf{i} \in S^*$ for $\mathbf{F} \in X^*$.

Theorem IV.2.01

Theorem IV.2.01. Let S be a non-degenerate subspace of a metric vector space X. Then there is a unique linear operator $\mathbf{P} : X \to S$ such that $(\mathbf{x} - \mathbf{R}\mathbf{x}) \cdot \mathbf{y} = 0$ for all $\mathbf{y} \in S$.

Proof. Let **G** be the metric tensor on X. Let \mathbf{G}' be the metric tensor on subspace S induced by **G** (so $\mathbf{G}' = \mathbf{G}|_{\mathbf{S}}$). Let $\mathbf{i}: S \to X$ be the inclusion map embedding (the "inclusion map") S into X. Then the dual map $\mathbf{i}^*: X^* \to S^*$ defined as $\mathbf{i}^*(\mathbf{f}) = \mathbf{f}|_S = \mathbf{f} \circ \mathbf{i} \in S^*$ for $\mathbf{F} \in X^*$. We set $\mathbf{P} = (\mathbf{G}'_{\perp})^{-1}$ (**P** is linear since it is a composition of linear mappings) with $\mathbf{G}'_{\perp}(\mathbf{s} = \mathbf{s}^* \text{ where } \mathbf{s}^*(\mathbf{y}) = \mathbf{G}'(\mathbf{s}, \mathbf{y}) \text{ for all } \mathbf{y} \in S \text{ (see Theorem IV.1.09) and}$ $\mathbf{G}_{\perp}: S \to X^*$ is defined as $\mathbf{G}_{\perp}(\mathbf{x}) = \mathbf{x}^*$ where $\mathbf{x}^*(\mathbf{y}) = \mathbf{G}(\mathbf{x}, \mathbf{y})$ (see Theorem IV.1.09). $x \xrightarrow{\mathbf{G}_{\downarrow}} x^*$ We then have $\mathbf{P} | \mathbf{G}'_{\uparrow} | \mathbf{G}'_{\downarrow} | \mathbf{G}'_{\downarrow}$ the diagram:

Theorem IV.2.01

Theorem IV.2.01. Let S be a non-degenerate subspace of a metric vector space X. Then there is a unique linear operator $\mathbf{P} : X \to S$ such that $(\mathbf{x} - \mathbf{R}\mathbf{x}) \cdot \mathbf{y} = 0$ for all $\mathbf{y} \in S$.

Proof. Let **G** be the metric tensor on X. Let \mathbf{G}' be the metric tensor on subspace S induced by **G** (so $\mathbf{G}' = \mathbf{G}|_{\mathbf{S}}$). Let $\mathbf{i}: S \to X$ be the inclusion map embedding (the "inclusion map") S into X. Then the dual map $\mathbf{i}^*: X^* \to S^*$ defined as $\mathbf{i}^*(\mathbf{f}) = \mathbf{f}|_S = \mathbf{f} \circ \mathbf{i} \in S^*$ for $\mathbf{F} \in X^*$. We set $\mathbf{P} = (\mathbf{G}'_{\perp})^{-1}$ (**P** is linear since it is a composition of linear mappings) with $\mathbf{G}'_{|}(\mathbf{s}=\mathbf{s}^{*}$ where $\mathbf{s}^{*}(\mathbf{y})=\mathbf{G}'(\mathbf{s},\mathbf{y})$ for all $\mathbf{y}\in S$ (see Theorem IV.1.09) and $\mathbf{G}_{\perp}: S \to X^*$ is defined as $\mathbf{G}_{\perp}(\mathbf{x}) = \mathbf{x}^*$ where $\mathbf{x}^*(\mathbf{y}) = \mathbf{G}(\mathbf{x}, \mathbf{y})$ (see Theorem IV.1.09). $x \xrightarrow{\mathbf{G}_{\downarrow}} x^*$ We then have G′ i* the diagram:

Theorem IV.2.01 (continued 1)

Proof continued. For any $\mathbf{y} \in S$ we have

$$\begin{array}{lll} (\mathbf{x} - \mathbf{P}\mathbf{x}) \cdot \mathbf{y} &=& \mathbf{G}(\mathbf{x} - \mathbf{P}\mathbf{x}, \mathbf{y}) = \mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{G}(\mathbf{P}\mathbf{x}, \mathbf{y}) \\ &=& \mathbf{G}(\mathbf{x}, \mathbf{y}) - (\mathbf{P}\mathbf{x}) \cdot \mathbf{y} \text{ where the dot product is in } X \\ &\quad \text{ and so is based on } \mathbf{G} \\ &=& \mathbf{G}(\mathbf{x}, \mathbf{y}) - \mathbf{G}_{\uparrow}'(\mathbf{i}^*(\mathbf{G}_{\downarrow}\mathbf{x})) \cdot \mathbf{y} \text{ by the definition of } \mathbf{P} \\ &=& \mathbf{G}(\mathbf{x}, \mathbf{y}) - \mathbf{G}'(\mathbf{G}_{\uparrow}'(\mathbf{i}^*(\mathbf{G}_{\downarrow}\mathbf{x})), \mathbf{y}) \text{ since the dot product is} \\ &\quad \text{ in } S \text{ and so is based on } \mathbf{G}. \end{array}$$

Now $\mathbf{G}_{\downarrow} \mathbf{x} \in X^*$, say $\mathbf{G}_{\downarrow} \mathbf{x} = \mathbf{x}^*$ where $\mathbf{x}^*(\mathbf{y}) = \mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{y} \in X$. Next, $\mathbf{i}(\mathbf{G}_{\downarrow} \mathbf{x}) \in S^*$, say $\mathbf{i}^*(\mathbf{x}^*) = \mathbf{s}^*$ where $\mathbf{s}^*(\mathbf{y}) = \mathbf{x}^*(\mathbf{y}) = \mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{y} \in S \subset X$ (so $\mathbf{s}^* = \mathbf{x}^*|_S$). Also, $\mathbf{G}_{\uparrow}(\mathbf{i}^*(\mathbf{G}_{\downarrow} \mathbf{x}) = \mathbf{G}'_{\uparrow}(\mathbf{s}^*) = \mathbf{s} \in S$ where $\mathbf{s}^*(\mathbf{y}) = \mathbf{G}'(\mathbf{s}, \mathbf{y}) = \mathbf{s} \cdot \mathbf{y}$ for all $\mathbf{y} \in S$. But $\mathbf{s}^* = \mathbf{x}^*|_S$, so $\mathbf{G}'(\mathbf{s}, \mathbf{y}) = \mathbf{s} \cdot \mathbf{y} = \mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{y} \in S$. Theorem IV.2.01 (continued 1)

Proof continued. For any $\mathbf{y} \in S$ we have

$$\begin{aligned} (\mathbf{x} - \mathbf{P}\mathbf{x}) \cdot \mathbf{y} &= \mathbf{G}(\mathbf{x} - \mathbf{P}\mathbf{x}, \mathbf{y}) = \mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{G}(\mathbf{P}\mathbf{x}, \mathbf{y}) \\ &= \mathbf{G}(\mathbf{x}, \mathbf{y}) - (\mathbf{P}\mathbf{x}) \cdot \mathbf{y} \text{ where the dot product is in } X \\ &\text{ and so is based on } \mathbf{G} \\ &= \mathbf{G}(\mathbf{x}, \mathbf{y}) - \mathbf{G}_{\uparrow}'(\mathbf{i}^*(\mathbf{G}_{\downarrow}\mathbf{x})) \cdot \mathbf{y} \text{ by the definition of } \mathbf{P} \\ &= \mathbf{G}(\mathbf{x}, \mathbf{y}) - \mathbf{G}'(\mathbf{G}_{\uparrow}'(\mathbf{i}^*(\mathbf{G}_{\downarrow}\mathbf{x})), \mathbf{y}) \text{ since the dot product is } \\ &\text{ in } S \text{ and so is based on } \mathbf{G}. \end{aligned}$$

Now $\mathbf{G}_{\downarrow} \mathbf{x} \in X^*$, say $\mathbf{G}_{\downarrow} \mathbf{x} = \mathbf{x}^*$ where $\mathbf{x}^*(\mathbf{y}) = \mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{y} \in X$. Next, $\mathbf{i}(\mathbf{G}_{\downarrow} \mathbf{x}) \in S^*$, say $\mathbf{i}^*(\mathbf{x}^*) = \mathbf{s}^*$ where $\mathbf{s}^*(\mathbf{y}) = \mathbf{x}^*(\mathbf{y}) = \mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{y} \in S \subset X$ (so $\mathbf{s}^* = \mathbf{x}^*|_S$). Also, $\mathbf{G}_{\uparrow}(\mathbf{i}^*(\mathbf{G}_{\downarrow} \mathbf{x}) = \mathbf{G}'_{\uparrow}(\mathbf{s}^*) = \mathbf{s} \in S$ where $\mathbf{s}^*(\mathbf{y}) = \mathbf{G}'(\mathbf{s}, \mathbf{y}) = \mathbf{s} \cdot \mathbf{y}$ for all $\mathbf{y} \in S$. But $\mathbf{s}^* = \mathbf{x}^*|_S$, so $\mathbf{G}'(\mathbf{s}, \mathbf{y}) = \mathbf{s} \cdot \mathbf{y} = \mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{y} \in S$. Theorem IV.2.01 (continued 2)

Proof continued. So

$$\mathbf{G}'(\mathbf{G}_\uparrow'(\mathbf{i}^*(\mathbf{G}_\downarrow\mathbf{x}),\mathbf{y}) \ = \ \mathbf{G}'(\mathbf{s},\mathbf{y})$$

- = $\mathbf{s} \cdot \mathbf{y}$ where the dot product is in S
- $= \mathbf{x} \cdot \mathbf{y}$ where the dot product is in X
- $= \mathbf{G}(\mathbf{x} \cdot \mathbf{y}) \text{ since the dot product in } X$ is based on metric tensor G.

The by (*) we now have $(\mathbf{x} - \mathbf{P}\mathbf{x}) \cdot \mathbf{y} = \mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{G}(\mathbf{x}, \mathbf{y}) = 0$. So there exists a linear map \mathbf{P} as claimed.

For uniqueness, suppose $\mathbf{Q} : X \to S$ is a linear map such that $(\mathbf{x} - \mathbf{Q}\mathbf{x}) \cdot \mathbf{y} = 0$ for all $\mathbf{y} \in S$ and $\mathbf{x} \in X$. Then, for all $\mathbf{y} \in S$ and $\mathbf{x} \in X$ we have

$$\begin{aligned} (\mathbf{x} - \mathbf{P}\mathbf{x} - (\mathbf{x} - \mathbf{Q}\mathbf{x})) \cdot \mathbf{y} &= \mathbf{G}(\mathbf{x} - \mathbf{P}\mathbf{x} - (\mathbf{x} - \mathbf{Q}\mathbf{x}), \mathbf{y}) \\ &= \mathbf{G}(\mathbf{Q}\mathbf{x} - \mathbf{P}\mathbf{x}, \mathbf{y}) = (\mathbf{Q}\mathbf{x} - \mathbf{P}\mathbf{x}) \cdot \mathbf{y} = \mathbf{0}. \end{aligned}$$

Theorem IV.2.01 (continued 2)

Proof continued. So

$$\mathbf{G}'(\mathbf{G}_\uparrow'(\mathbf{i}^*(\mathbf{G}_\downarrow\mathbf{x}),\mathbf{y}) \ = \ \mathbf{G}'(\mathbf{s},\mathbf{y})$$

- = $\mathbf{s} \cdot \mathbf{y}$ where the dot product is in S
- $= \mathbf{x} \cdot \mathbf{y}$ where the dot product is in X
- $= \mathbf{G}(\mathbf{x} \cdot \mathbf{y}) \text{ since the dot product in } X$ is based on metric tensor *G*.

The by (*) we now have $(\mathbf{x} - \mathbf{P}\mathbf{x}) \cdot \mathbf{y} = \mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{G}(\mathbf{x}, \mathbf{y}) = 0$. So there exists a linear map \mathbf{P} as claimed.

For uniqueness, suppose $\mathbf{Q} : X \to S$ is a linear map such that $(\mathbf{x} - \mathbf{Q}\mathbf{x}) \cdot \mathbf{y} = 0$ for all $\mathbf{y} \in S$ and $\mathbf{x} \in X$. Then, for all $\mathbf{y} \in S$ and $\mathbf{x} \in X$ we have

$$\begin{aligned} (\mathbf{x} - \mathbf{P}\mathbf{x} - (\mathbf{x} - \mathbf{Q}\mathbf{x})) \cdot \mathbf{y} &= \mathbf{G}(\mathbf{x} - \mathbf{P}\mathbf{x} - (\mathbf{x} - \mathbf{Q}\mathbf{x}), \mathbf{y}) \\ &= \mathbf{G}(\mathbf{Q}\mathbf{x} - \mathbf{P}\mathbf{x}, \mathbf{y}) = (\mathbf{Q}\mathbf{x} - \mathbf{P}\mathbf{x}) \cdot \mathbf{y} = \mathbf{0}. \end{aligned}$$

Theorem IV.2.01 (continued 3)

Theorem IV.2.01. Let S be a non-degenerate subspace of a metric vector space X. Then there is a unique linear operator $\mathbf{P} : X \to S$ such that $(\mathbf{x} - \mathbf{Rx}) \cdot \mathbf{y} = 0$ for all $\mathbf{y} \in S$.

Proof continued. Since **G** is non-degenerate on *S* by hypothesis (that is, *S* is a non-degenerate subspace of *X*), and $\mathbf{Q}\mathbf{x} - \mathbf{P}\mathbf{x} \in S$ (since $\mathbf{Q}\mathbf{x}$, $\mathbf{P}\mathbf{x} \in S$ by hypothesis, since $\mathbf{P}, \mathbf{Q} : X \to S$), then we must have $\mathbf{Q}\mathbf{x} = \mathbf{P}\mathbf{x}$ for all $\mathbf{x} \in X$. That is, $\mathbf{P} = \mathbf{Q}$ and the linear map is unique.

Corollary IV.2.02. The projection operator **P** onto *S* is idempotent. That is, P(Px) = Px for all $x \in X$.

Proof. Let $\mathbf{x} \in X$ and say $\mathbf{y} = \mathbf{P}\mathbf{x}$. Since \mathbf{P} is a projection operator, then $(\mathbf{y} = \mathbf{P}\mathbf{x}) \cdot \mathbf{y}' = 0$ for all $\mathbf{y}' \in S$. But $\mathbf{y} = \mathbf{P}\mathbf{x} \in S$ since $\mathbf{P} : X \to S$ and \mathbf{G} is non-degenerate on S (by definition) so $\mathbf{y} = \mathbf{P}\mathbf{y} = \mathbf{0}$ and $\mathbf{y} = \mathbf{P}\mathbf{y}$. Therefore $\mathbf{y} = \mathbf{P}\mathbf{x} = \mathbf{P}\mathbf{y} = \mathbf{P}(\mathbf{P}\mathbf{y})$. Since $\mathbf{x} \in X$ is arbitrary, then $\mathbf{P}\mathbf{x} = \mathbf{P}(\mathbf{P}\mathbf{x})$ for all $\mathbf{x} \in X$, as claimed.

Corollary IV.2.02. The projection operator **P** onto *S* is idempotent. That is, P(Px) = Px for all $x \in X$.

Proof. Let $\mathbf{x} \in X$ and say $\mathbf{y} = \mathbf{P}\mathbf{x}$. Since \mathbf{P} is a projection operator, then $(\mathbf{y} = \mathbf{P}\mathbf{x}) \cdot \mathbf{y}' = 0$ for all $\mathbf{y}' \in S$. But $\mathbf{y} = \mathbf{P}\mathbf{x} \in S$ since $\mathbf{P} : X \to S$ and \mathbf{G} is non-degenerate on S (by definition) so $\mathbf{y} = \mathbf{P}\mathbf{y} = \mathbf{0}$ and $\mathbf{y} = \mathbf{P}\mathbf{y}$. Therefore $\mathbf{y} = \mathbf{P}\mathbf{x} = \mathbf{P}\mathbf{y} = \mathbf{P}(\mathbf{P}\mathbf{y})$. Since $\mathbf{x} \in X$ is arbitrary, then $\mathbf{P}\mathbf{x} = \mathbf{P}(\mathbf{P}\mathbf{x})$ for all $\mathbf{x} \in X$, as claimed.

Lemma IV.2.04. For any non-degenerate subspace *S* of *X*, each $x \in X$ can be uniquely expressed as $\mathbf{x} = \mathbf{s} + \mathbf{t}$ where $\mathbf{x} \in S$ and $\mathbf{f} \in S^{\perp}$.

Proof. Let **P** be the orthogonal projection onto *S*. Set $\mathbf{s} = \mathbf{P}\mathbf{x}$ and $\mathbf{t} = \mathbf{x} - \mathbf{P}\mathbf{x}$. Then $\mathbf{s} \in S$ and $\mathbf{t} \in S^{\perp}$ by the definition of **P**, and $\mathbf{x} = \mathbf{s} + \mathbf{t}$. Since **P** is the unique orthogonal projection onto *S* by Theorem IV.2.01, then $\mathbf{s} = \mathbf{P}\mathbf{x}$ is unique and so $\mathbf{t} = \mathbf{x} - \mathbf{P}\mathbf{x}$ is unique, as claimed.

Lemma IV.2.04. For any non-degenerate subspace *S* of *X*, each $x \in X$ can be uniquely expressed as $\mathbf{x} = \mathbf{s} + \mathbf{t}$ where $\mathbf{x} \in S$ and $\mathbf{f} \in S^{\perp}$.

Proof. Let **P** be the orthogonal projection onto *S*. Set $\mathbf{s} = \mathbf{P}\mathbf{x}$ and $\mathbf{t} = \mathbf{x} - \mathbf{P}\mathbf{x}$. Then $\mathbf{s} \in S$ and $\mathbf{t} \in S^{\perp}$ by the definition of **P**, and $\mathbf{x} = \mathbf{s} + \mathbf{t}$. Since **P** is the unique orthogonal projection onto *S* by Theorem IV.2.01, then $\mathbf{s} = \mathbf{P}\mathbf{x}$ is unique and so $\mathbf{t} = \mathbf{x} - \mathbf{P}\mathbf{x}$ is unique, as claimed.

Corollary IV.2.06

Corollary IV.2.06. If G is non-degenerate on S, it is non-degenerate on S^{\perp} .

Proof. Recall that by definition, **G** in non-degenerate on *S* if $\mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} = 0$ for all $y \in S$ implies $\mathbf{x} = \mathbf{0}$. Let $\mathbf{x} \in S^{\perp}$. Then $\mathbf{x} \cdot \mathbf{t} + \mathbf{x} \cdot \mathbf{s} = 0$ for all $\mathbf{t} \in S^{\perp}$ and $\mathbf{s} \in S$, or $\mathbf{x} \cdot (\mathbf{t} + \mathbf{s}) = 0$ for all $\mathbf{t} \in S^{\perp}$ and $\mathbf{s} \in S$.

Differential Geometry

Corollary IV.2.06. If G is non-degenerate on S, it is non-degenerate on S^{\perp} .

Proof. Recall that by definition, **G** in non-degenerate on *S* if $\mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} = 0$ for all $y \in S$ implies $\mathbf{x} = \mathbf{0}$. Let $\mathbf{x} \in S^{\perp}$. Then $\mathbf{x} \cdot \mathbf{t} + \mathbf{x} \cdot \mathbf{s} = 0$ for all $\mathbf{t} \in S^{\perp}$ and $\mathbf{s} \in S$, or $\mathbf{x} \cdot (\mathbf{t} + \mathbf{s}) = 0$ for all $\mathbf{t} \in S^{\perp}$ and $\mathbf{s} \in S$. Since by Lemma IV.2.04, every element \mathbf{y} of X is of the form $\mathbf{y} = \mathbf{s} + \mathbf{t}$ then we have $\mathbf{x} \cdot \mathbf{y} = \mathbf{G}(\mathbf{x}, \mathbf{y}) = 0$ for all $\mathbf{y} \in X$. Since **G** is non-degenerate on X then this implies $\mathbf{x} = \mathbf{0}$. Therefore **G** is non-degenerate on S^{\perp} , as claimed.

Corollary IV.2.06. If G is non-degenerate on S, it is non-degenerate on S^{\perp} .

Proof. Recall that by definition, **G** in non-degenerate on *S* if $\mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} = 0$ for all $y \in S$ implies $\mathbf{x} = \mathbf{0}$. Let $\mathbf{x} \in S^{\perp}$. Then $\mathbf{x} \cdot \mathbf{t} + \mathbf{x} \cdot \mathbf{s} = 0$ for all $\mathbf{t} \in S^{\perp}$ and $\mathbf{s} \in S$, or $\mathbf{x} \cdot (\mathbf{t} + \mathbf{s}) = 0$ for all $\mathbf{t} \in S^{\perp}$ and $\mathbf{s} \in S$. Since by Lemma IV.2.04, every element \mathbf{y} of X is of the form $\mathbf{y} = \mathbf{s} + \mathbf{t}$ then we have $\mathbf{x} \cdot \mathbf{y} = \mathbf{G}(\mathbf{x}, \mathbf{y}) = 0$ for all $\mathbf{y} \in X$. Since **G** is non-degenerate on X then this implies $\mathbf{x} = \mathbf{0}$. Therefore **G** is non-degenerate on S^{\perp} , as claimed.

Lemma IV.2.A

Lemma IV.2.A. Properties of Adjoint.

For **A** and **B** linear operators on a metric vector space (X, G) we have:

Proof. (a) We have $\mathbf{I} \mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{I} \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in X$, so $\mathbf{I}^T = \mathbf{I}$ (since the transpose of a linear operator is unique).

Lemma IV.2.A

Lemma IV.2.A. Properties of Adjoint.

For **A** and **B** linear operators on a metric vector space (X, G) we have:

(a)
$$\mathbf{I}^{T} = \mathbf{I}$$
 where \mathbf{I} is the identity operator.
(b) $(\mathbf{A}^{T})^{T} = \mathbf{A}$.
(c) $(\mathbf{A}\mathbf{B})^{T} = \mathbf{B}^{T}\mathbf{A}^{T}$.

Proof. (a) We have $\mathbf{I} \mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{I} \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in X$, so $\mathbf{I}^T = \mathbf{I}$ (since the transpose of a linear operator is unique).

(b) By the symmetry of **G** (and so the symmetry of the dot product) we have for all $\mathbf{x}, \mathbf{y} \in X$ that $\mathbf{y} \cdot \mathbf{A}^T \mathbf{x} = \mathbf{A}^T \mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{A}\mathbf{y}$ and $\mathbf{y} \cdot \mathbf{A}^T \mathbf{x} = (\mathbf{A}^T)^T \mathbf{y} \cdot \mathbf{x} = \mathbf{x} \cdot (\mathbf{A}^T)^T \mathbf{y}$. So $\mathbf{x} \cdot \mathbf{A}\mathbf{y} = \mathbf{x}(\mathbf{A}^T)^T \mathbf{y}$ or $\mathbf{x} \cdot (\mathbf{A}\mathbf{y} - (\mathbf{A}^T)^T \mathbf{y}) = 0$ for all $\mathbf{x} \in X$. So the non-degeneracy of **G** implies $\mathbf{A}\mathbf{y} - (\mathbf{A}^T)^T \mathbf{y} = \mathbf{0}$, or $\mathbf{A}\mathbf{y} = (\mathbf{A}^T)^T \mathbf{y}$. Since this holds for all $\mathbf{y} \in X$ then $\mathbf{A} = (\mathbf{A}^T)^T$.

Lemma IV.2.A

Lemma IV.2.A. Properties of Adjoint.

For **A** and **B** linear operators on a metric vector space (X, G) we have:

(a)
$$\mathbf{I}^{T} = \mathbf{I}$$
 where \mathbf{I} is the identity operator.
(b) $(\mathbf{A}^{T})^{T} = \mathbf{A}$.
(c) $(\mathbf{A}\mathbf{B})^{T} = \mathbf{B}^{T}\mathbf{A}^{T}$.

Proof. (a) We have $\mathbf{I} \mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{I} \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in X$, so $\mathbf{I}^T = \mathbf{I}$ (since the transpose of a linear operator is unique).

(b) By the symmetry of **G** (and so the symmetry of the dot product) we have for all $\mathbf{x}, \mathbf{y} \in X$ that $\mathbf{y} \cdot \mathbf{A}^T \mathbf{x} = \mathbf{A}^T \mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{A}\mathbf{y}$ and $\mathbf{y} \cdot \mathbf{A}^T \mathbf{x} = (\mathbf{A}^T)^T \mathbf{y} \cdot \mathbf{x} = \mathbf{x} \cdot (\mathbf{A}^T)^T \mathbf{y}$. So $\mathbf{x} \cdot \mathbf{A}\mathbf{y} = \mathbf{x}(\mathbf{A}^T)^T \mathbf{y}$ or $\mathbf{x} \cdot (\mathbf{A}\mathbf{y} - (\mathbf{A}^T)^T \mathbf{y}) = 0$ for all $\mathbf{x} \in X$. So the non-degeneracy of **G** implies $\mathbf{A}\mathbf{y} - (\mathbf{A}^T)^T \mathbf{y} = \mathbf{0}$, or $\mathbf{A}\mathbf{y} = (\mathbf{A}^T)^T \mathbf{y}$. Since this holds for all $\mathbf{y} \in X$ then $\mathbf{A} = (\mathbf{A}^T)^T$.

Lemma IV.2.A (continued)

Lemma IV.2.A. Properties of Adjoint.

For **A** and **B** linear operators on a metric vector space (X, G) we have:

Proof (continued). (c) Notice that **AB** is also a linear operator on (X, \mathbf{G}) . For all $\mathbf{x}, \mathbf{y} \in X$ we have

$$(\mathbf{A}\mathbf{B})^T \mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot (\mathbf{A}\mathbf{B}\mathbf{y}) = \mathbf{A}^T \mathbf{x} \cdot \mathbf{B}\mathbf{y} = \mathbf{B}^T \mathbf{A}^T \mathbf{x} \cdot \mathbf{y}.$$

So $(\mathbf{AB})^T \mathbf{x} \cdot \mathbf{y} - \mathbf{B}^T \mathbf{A}^T \mathbf{x} \cdot \mathbf{y} = ((\mathbf{AB})^T - \mathbf{B}^T \mathbf{A}^T \mathbf{x}) \cdot \mathbf{y} = 0$ for all $\mathbf{y} \in X$. So the non-degenerate of **G** implies $(\mathbf{AB})^T \mathbf{x} - \mathbf{B}^T \mathbf{A}^T \mathbf{x} = \mathbf{0}$ or $(\mathbf{AB})^T \mathbf{x} = \mathbf{B}^T \mathbf{A}^T \mathbf{x} = \mathbf{B}^T \mathbf{A}^T = \mathbf{x}$. Since this holds for all $\mathbf{x} \in X$ then $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$.

Lemma IV.2.A (continued)

Lemma IV.2.A. Properties of Adjoint.

For **A** and **B** linear operators on a metric vector space (X, G) we have:

Proof (continued). (c) Notice that **AB** is also a linear operator on (X, \mathbf{G}) . For all $\mathbf{x}, \mathbf{y} \in X$ we have

$$(\mathbf{A}\mathbf{B})^{\mathsf{T}}\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot (\mathbf{A}\mathbf{B}\mathbf{y}) = \mathbf{A}^{\mathsf{T}}\mathbf{x} \cdot \mathbf{B}\mathbf{y} = \mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{x} \cdot \mathbf{y}.$$

So $(\mathbf{AB})^T \mathbf{x} \cdot \mathbf{y} - \mathbf{B}^T \mathbf{A}^T \mathbf{x} \cdot \mathbf{y} = ((\mathbf{AB})^T - \mathbf{B}^T \mathbf{A}^T \mathbf{x}) \cdot \mathbf{y} = 0$ for all $\mathbf{y} \in X$. So the non-degenerate of **G** implies $(\mathbf{AB})^T \mathbf{x} - \mathbf{B}^T \mathbf{A}^T \mathbf{x} = \mathbf{0}$ or $(\mathbf{AB})^T \mathbf{x} = \mathbf{B}^T \mathbf{A}^T \mathbf{x} = \mathbf{B}^T \mathbf{A}^T = \mathbf{x}$. Since this holds for all $\mathbf{x} \in X$ then $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$. **Lemma IV.2.09.** An operator **A** on a metric vector space (X, \mathbf{G}) is orthogonal if and only if $\mathbf{A}^T \mathbf{A} = \mathbf{I}$.

Proof. Let $\mathbf{x} \in X$. Then $\mathbf{A}\mathbf{x} \cdot \mathbf{A}\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{y} \in X$ (that is, \mathbf{A} is orthogonal) if and only if $(\mathbf{A}^T \mathbf{A}\mathbf{x}) \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ by the definition of adjoint. This is equivalent to $(\mathbf{A}^T \mathbf{A}\mathbf{x}) \cdot \mathbf{y} - \mathbf{x} \cdot \mathbf{y} = \mathbf{0}$ or $(\mathbf{A}^T \mathbf{A}\mathbf{x} - \mathbf{x}) \cdot \mathbf{y} = \mathbf{0}$ for all $\mathbf{y} \in X$. Since \mathbf{G} is non-degenerate (by the definition of metric tensor) then this is equivalent to $\mathbf{A}^T \mathbf{A}\mathbf{x} - \mathbf{x} = \mathbf{0}$ or, since \mathbf{x} is an arbitrary element of X, $\mathbf{A}^T \mathbf{A} = \mathbf{I}$.

Lemma IV.2.09. An operator **A** on a metric vector space (X, \mathbf{G}) is orthogonal if and only if $\mathbf{A}^T \mathbf{A} = \mathbf{I}$.

Proof. Let $\mathbf{x} \in X$. Then $A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{y} \in X$ (that is, A is orthogonal) if and only if $(A^T A \mathbf{x}) \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ by the definition of adjoint. This is equivalent to $(A^T A \mathbf{x}) \cdot \mathbf{y} - \mathbf{x} \cdot \mathbf{y} = \mathbf{0}$ or $(A^T A \mathbf{x} - \mathbf{x}) \cdot \mathbf{y} = \mathbf{0}$ for all $\mathbf{y} \in X$. Since \mathbf{G} is non-degenerate (by the definition of metric tensor) then this is equivalent to $A^T A \mathbf{x} - \mathbf{x} = \mathbf{0}$ or, since \mathbf{x} is an arbitrary element of X, $A^T A = \mathbf{I}$.

Lemma IV.2.11

Lemma IV.2.11. Orthogonal projection P onto a non-degenerate subspace S of a metric vector space X is a self adjoint operator.

Proof. Let $\mathbf{x} = \mathbf{s} + \mathbf{t}$ and $\mathbf{y} = \mathbf{s}' + \mathbf{t}'$ where $\mathbf{s}, \mathbf{s}' \in S$ and $\mathbf{t}, \mathbf{t}' \in S^{\perp}$ (by Lemma IV.2.04, the choices of $\mathbf{s}, \mathbf{s}', \mathbf{t}, \mathbf{t}'$ are unique). Then

$$\begin{aligned} \mathbf{P}\mathbf{x} \cdot \mathbf{y} &= \mathbf{P}(\mathbf{s} + \mathbf{t}) \cdot (\mathbf{s}' + \mathbf{t}') \\ &= \mathbf{s} \cdot (\mathbf{s}' + \mathbf{t}') \text{ since } \mathbf{P}\mathbf{x} = \mathbf{P}(\mathbf{s} + \mathbf{t}) = \mathbf{s} \\ &= \mathbf{s} \cdot \mathbf{s}' + \mathbf{s} \cdot \mathbf{t}' \\ &= \mathbf{s} \cdot \mathbf{s}' \text{ since } \mathbf{s} \cdot \mathbf{t}' = 0 \text{ because } \mathbf{t}' \in S^{\perp} \end{aligned}$$

Lemma IV.2.11

Lemma IV.2.11. Orthogonal projection P onto a non-degenerate subspace S of a metric vector space X is a self adjoint operator.

Proof. Let $\mathbf{x} = \mathbf{s} + \mathbf{t}$ and $\mathbf{y} = \mathbf{s}' + \mathbf{t}'$ where $\mathbf{s}, \mathbf{s}' \in S$ and $\mathbf{t}, \mathbf{t}' \in S^{\perp}$ (by Lemma IV.2.04, the choices of $\mathbf{s}, \mathbf{s}', \mathbf{t}, \mathbf{t}'$ are unique). Then

$$\begin{aligned} \mathsf{P}\mathbf{x} \cdot \mathbf{y} &= \mathsf{P}(\mathbf{s} + \mathbf{t}) \cdot (\mathbf{s}' + \mathbf{t}') \\ &= \mathbf{s} \cdot (\mathbf{s}' + \mathbf{t}') \text{ since } \mathsf{P}\mathbf{x} = \mathsf{P}(\mathbf{s} + \mathbf{t}) = \mathbf{s} \\ &= \mathbf{s} \cdot \mathbf{s}' + \mathbf{s} \cdot \mathbf{t}' \\ &= \mathbf{s} \cdot \mathbf{s}' \text{ since } \mathbf{s} \cdot \mathbf{t}' = 0 \text{ because } \mathbf{t}' \in S^{\perp} \end{aligned}$$

Similarly,

$$\mathbf{x}\cdot\mathbf{P}\mathbf{y}=(\mathbf{s}+\mathbf{t})\cdot\mathbf{P}(\mathbf{s}'+\mathbf{t}')=(\mathbf{s}+\mathbf{t})\cdot\mathbf{s}'=\mathbf{s}\cdot\mathbf{s}'+\mathbf{t}\cdot\mathbf{s}'=\mathbf{s}\cdot\mathbf{s}',$$

so that $\mathbf{Px} \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{Py}$. Since this holds for all $\mathbf{x}, \mathbf{y} \in X$, then $\mathbf{P}^T = \mathbf{P}$ and \mathbf{P} is self adjoint, as claimed.

Lemma IV.2.11

Lemma IV.2.11. Orthogonal projection P onto a non-degenerate subspace S of a metric vector space X is a self adjoint operator.

Proof. Let $\mathbf{x} = \mathbf{s} + \mathbf{t}$ and $\mathbf{y} = \mathbf{s}' + \mathbf{t}'$ where $\mathbf{s}, \mathbf{s}' \in S$ and $\mathbf{t}, \mathbf{t}' \in S^{\perp}$ (by Lemma IV.2.04, the choices of $\mathbf{s}, \mathbf{s}', \mathbf{t}, \mathbf{t}'$ are unique). Then

$$\begin{aligned} \mathsf{P}\mathbf{x} \cdot \mathbf{y} &= \mathsf{P}(\mathbf{s} + \mathbf{t}) \cdot (\mathbf{s}' + \mathbf{t}') \\ &= \mathbf{s} \cdot (\mathbf{s}' + \mathbf{t}') \text{ since } \mathsf{P}\mathbf{x} = \mathsf{P}(\mathbf{s} + \mathbf{t}) = \mathbf{s} \\ &= \mathbf{s} \cdot \mathbf{s}' + \mathbf{s} \cdot \mathbf{t}' \\ &= \mathbf{s} \cdot \mathbf{s}' \text{ since } \mathbf{s} \cdot \mathbf{t}' = 0 \text{ because } \mathbf{t}' \in S^{\perp}. \end{aligned}$$

Similarly,

$$\mathbf{x}\cdot\mathbf{P}\mathbf{y}=(\mathbf{s}+\mathbf{t})\cdot\mathbf{P}(\mathbf{s}'+\mathbf{t}')=(\mathbf{s}+\mathbf{t})\cdot\mathbf{s}'=\mathbf{s}\cdot\mathbf{s}'+\mathbf{t}\cdot\mathbf{s}'=\mathbf{s}\cdot\mathbf{s}',$$

so that $\mathbf{P}\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{P}\mathbf{y}$. Since this holds for all $\mathbf{x}, \mathbf{y} \in X$, then $\mathbf{P}^T = \mathbf{P}$ and \mathbf{P} is self adjoint, as claimed.