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Theorem IV.2.01

Theorem IV.2.01

Theorem IV.2.01. Let S be a non-degenerate subspace of a metric
vector space X . Then there is a unique linear operator P : X → S such
that (x− Rx) · y = 0 for all y ∈ S .

Proof. Let G be the metric tensor on X . Let G′ be the metric tensor on
subspace S induced by G (so G′ = G|S). Let i : S → X be the inclusion
map embedding (the “inclusion map”) S into X . Then the dual map
i∗ : X ∗ → S∗ defined as i∗(f) = f|S = f ◦ i ∈ S∗ for F ∈ X ∗.

We set
P = (G′

↓)
−1 (P is linear since it is a composition of linear mappings) with

G′
↓(s = s∗ where s∗(y) = G′(s, y) for all y ∈ S (see Theorem IV.1.09) and

G↓ : S → X ∗ is defined as G↓(x) = x∗ where x∗(y) = G(x, y) (see
Theorem IV.1.09).
We then have
the diagram:

X ∗

?

X -

S∗
?

S �

G↓

G′
↑

P i∗
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Theorem IV.2.01

Theorem IV.2.01 (continued 1)

Proof continued. For any y ∈ S we have

(x− Px) · y = G(x− Px, y) = G(x, y) = G(Px, y)

= G(x, y)− (Px) · y where the dot product is in X

and so is based on G

= G(x, y)− G′
↑(i

∗(G↓x)) · y by the definition of P

= G(x, y)− G′(G′
↑(i

∗(G↓x)), y) since the dot product is

in S and so is based on G. (∗)

Now G↓x ∈ X ∗, say G↓x = x∗ where x∗(y) = G(x, y) = x · y for all y ∈ X .
Next, i(G↓x) ∈ S∗, say i∗(x∗) = s∗ where s∗(y) = x∗(y) = G(x, y) = x · y
for all y ∈ S ⊂ X (so s∗ = x∗|S). Also, G↑(i

∗(G↓x) = G′
↑(s

∗) = s ∈ S
where s∗(y) = G′(s, y) = s · y for all y ∈ S . But s∗ = x∗|S , so
G′(s, y) = s · y = G(x, y) = x · y for all y ∈ S .
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Theorem IV.2.01

Theorem IV.2.01 (continued 2)

Proof continued. So

G′(G′
↑(i

∗(G↓x), y) = G′(s, y)

= s · y where the dot product is in S

= x · y where the dot product is in X

= G(x · y) since the dot product in X

is based on metric tensor G .

The by (∗) we now have (x− Px) · y = G(x, y) = G(x, y) = 0. So there
exists a linear map P as claimed.

For uniqueness, suppose Q : X → S is a linear map such that
(x−Qx) · y = 0 for all y ∈ S and x ∈ X . Then, for all y ∈ S and x ∈ X
we have

(x− Px− (x−Qx)) · y = G(x− Px− (x−Qx), y)

= G(Qx− Px, y) = (Qx− Px) · y = 0.
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Theorem IV.2.01

Theorem IV.2.01 (continued 3)

Theorem IV.2.01. Let S be a non-degenerate subspace of a metric
vector space X . Then there is a unique linear operator P : X → S such
that (x− Rx) · y = 0 for all y ∈ S .

Proof continued. Since G is non-degenerate on S by hypothesis (that is,
S is a non-degenerate subspace of X ), and Qx− Px ∈ S (since Qx,
Px ∈ S by hypothesis, since P,Q : X → S), then we must have Qx = Px
for all x ∈ X . That is, P = Q and the linear map is unique.
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Corollary IV.2.02

Corollary IV.2.02

Corollary IV.2.02. The projection operator P onto S is idempotent. That
is, P(Px) = Px for all x ∈ X .

Proof. Let x ∈ X and say y = Px. Since P is a projection operator, then
(y = Px) · y′ = 0 for all y′ ∈ S . But y = Px ∈ S since P : X → S and G is
non-degenerate on S (by definition) so y = Py = 0 and y = Py. Therefore
y = Px = Py = P(Py). Since x ∈ X is arbitrary, then Px = P(Px) for all
x ∈ X , as claimed.
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Lemma IV.2.04

Lemma IV.2.04

Lemma IV.2.04. For any non-degenerate subspace S of X , each x ∈ X
can be uniquely expressed as x = s + t where x ∈ S and f ∈ S⊥.

Proof. Let P be the orthogonal projection onto S . Set s = Px and
t = x− Px. Then s ∈ S and t ∈ S⊥ by the definition of P, and x = s + t.
Since P is the unique orthogonal projection onto S by Theorem IV.2.01,
then s = Px is unique and so t = x− Px is unique, as claimed.

() Differential Geometry May 9, 2019 8 / 13



Lemma IV.2.04

Lemma IV.2.04

Lemma IV.2.04. For any non-degenerate subspace S of X , each x ∈ X
can be uniquely expressed as x = s + t where x ∈ S and f ∈ S⊥.

Proof. Let P be the orthogonal projection onto S . Set s = Px and
t = x− Px. Then s ∈ S and t ∈ S⊥ by the definition of P, and x = s + t.
Since P is the unique orthogonal projection onto S by Theorem IV.2.01,
then s = Px is unique and so t = x− Px is unique, as claimed.

() Differential Geometry May 9, 2019 8 / 13



Corollary IV.2.06

Corollary IV.2.06

Corollary IV.2.06. If G is non-degenerate on S , it is non-degenerate on
S⊥.

Proof. Recall that by definition, G in non-degenerate on S if
G(x, y) = x · y = 0 for all y ∈ S implies x = 0. Let x ∈ S⊥. Then
x · t + x · s = 0 for all t ∈ S⊥ and s ∈ S , or x · (t + s) = 0 for all t ∈ S⊥

and s ∈ S .

Since by Lemma IV.2.04, every element y of X is of the form
y = s + t then we have x · y = G(x, y) = 0 for all y ∈ X . Since G is
non-degenerate on X then this implies x = 0. Therefore G is
non-degenerate on S⊥, as claimed.
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Lemma IV.2.A

Lemma IV.2.A

Lemma IV.2.A. Properties of Adjoint.
For A and B linear operators on a metric vector space (X ,G ) we have:

(a) IT = I where I is the identity operator.

(b) (AT )T = A.

(c) (AB)T = BTAT .

Proof. (a) We have Ix · y = x · Iy for all x, y ∈ X , so IT = I (since the
transpose of a linear operator is unique).

(b) By the symmetry of G (and so the symmetry of the dot product) we
have for all x, y ∈ X that y · ATx = ATx · y = x · Ay and
y · ATx = (AT )Ty · x = x · (AT )Ty. So x · Ay = x(AT )Ty or
x · (Ay − (AT )Ty) = 0 for all x ∈ X . So the non-degeneracy of G implies
Ay − (AT )Ty = 0, or Ay = (AT )Ty. Since this holds for all y ∈ X then
A = (AT )T .
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Lemma IV.2.A

Lemma IV.2.A (continued)

Lemma IV.2.A. Properties of Adjoint.
For A and B linear operators on a metric vector space (X ,G ) we have:

(a) IT = I where I is the identity operator.

(b) (AT )T = A.

(c) (AB)T = BTAT .

Proof (continued). (c) Notice that AB is also a linear operator on
(X ,G). For all x, y ∈ X we have

(AB)Tx · y = x · (ABy) = ATx · By = BTATx · y.

So (AB)Tx · y − BTATx · y = ((AB)T − BTATx) · y = 0 for all y ∈ X .
So the non-degenerate of G implies (AB)Tx− BTATx = 0 or
(AB)Tx = BTATx = BTAT = x. Since this holds for all x ∈ X then
(AB)T = BTAT .
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Lemma IV.2.A (continued)
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Lemma IV.2.09

Lemma IV.2.09

Lemma IV.2.09. An operator A on a metric vector space (X ,G) is
orthogonal if and only if ATA = I.

Proof. Let x ∈ X . Then Ax · Ay = x · y for all y ∈ X (that is, A is
orthogonal) if and only if (ATAx) · y = x · y by the definition of adjoint.
This is equivalent to (ATAx) · y − x · y = 0 or (ATAx− x) · y = 0 for all
y ∈ X . Since G is non-degenerate (by the definition of metric tensor) then
this is equivalent to ATAx− x = 0 or, since x is an arbitrary element of
X , ATA = I.
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Lemma IV.2.11

Lemma IV.2.11

Lemma IV.2.11. Orthogonal projection P onto a non-degenerate
subspace S of a metric vector space X is a self adjoint operator.

Proof. Let x = s + t and y = s′ + t′ where s, s′ ∈ S and t, t′ ∈ S⊥ (by
Lemma IV.2.04, the choices of s, s′, t, t′ are unique). Then

Px · y = P(s + t) · (s′ + t′)

= s · (s′ + t′) since Px = P(s + t) = s

= s · s′ + s · t′

= s · s′ since s · t′ = 0 because t′ ∈ S⊥.

Similarly,

x · Py = (s + t) · P(s′ + t′) = (s + t) · s′ = s · s′ + t · s′ = s · s′,

so that Px · y = x · Py. Since this holds for all x, y ∈ X , then PT = P and
P is self adjoint, as claimed.
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