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Theorem 1V.2.01

Theorem IV.2.01. Let S be a non-degenerate subspace of a metric
vector space X. Then there is a unique linear operator P : X — S such
that (x —Rx)-y=0forally € S.
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Theorem 1V.2.01

Theorem IV.2.01. Let S be a non-degenerate subspace of a metric
vector space X. Then there is a unique linear operator P : X — S such
that (x —Rx)-y=0forally € S.

Proof. Let G be the metric tensor on X. Let G’ be the metric tensor on
subspace S induced by G (so G’ = G|s). Leti:S — X be the inclusion
map embedding (the “inclusion map”) S into X. Then the dual map
i*: X* — 5" defined as i*(f) = f|s =foi€ S* for F € X*.
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Theorem 1V.2.01

Theorem IV.2.01. Let S be a non-degenerate subspace of a metric
vector space X. Then there is a unique linear operator P : X — S such
that (x —Rx)-y=0forally € S.

Proof. Let G be the metric tensor on X. Let G’ be the metric tensor on
subspace S induced by G (so G’ = G|s). Leti:S — X be the inclusion
map embedding (the “inclusion map”) S into X. Then the dual map

i* 1 X* — S* defined as i*(f) = f|s = foi € S* for F € X*. We set

P= (G/l)_l (P is linear since it is a composition of linear mappings) with
G| (s = s where s*(y) = G'(s,y) for all y € S (see Theorem 1V.1.09) and
G| : § — X* is defined as G| (x) = x* where x*(y) = G(x,y) (see

Theorem 1V.1.09). G,
We then have X - X*
the diagram: PJ Ji*
/
G 1 g«
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Theorem 1V.2.01 (continued 1)

Proof continued. For any y € S we have

(x—=Px)-y = G(x—Px,y)=G(x,y) = G(Px,y)
= G(x,y) — (Px) - y where the dot product is in X
and so is based on G
= G(x,y) — G}(i"(Gx)) - y by the definition of P
= G(x,y) — G'(G}(i"(G|x)), y) since the dot product is
in S and so is based on G. (%)

Differential Geometry Y



Theorem 1V.2.01 (continued 1)

Proof continued. For any y € S we have

(x—=Px)-y = G(x—Px,y)=G(x,y) = G(Px,y)
= G(x,y) — (Px) - y where the dot product is in X
and so is based on G
= G(x,y) — G}(i"(Gx)) - y by the definition of P
= G(x,y) — G'(G}(i"(G|x)), y) since the dot product is
in S and so is based on G. (%)

Now G x € X*, say G|x = x* where x*(y) = G(x,y) =x-y forally € X.
Next, i(G|x) € §*, say i*(x*) = s* where s*(y) = x*(y) = G(x,y) =x-y
forally € S C X (so s* = x"|s). Also, G1(i*(G,x) = G{(s") =s€ S
where s*(y) = G/(s,y) =s-y for ally € S. But s* = x*|S, so
G'(s,y)=s-y=G(x,y)=x-yforally € S.
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Theorem 1V.2.01 (continued 2)

Proof continued. So
G/(G,("(Gx),y) = G(sy)
= s-y where the dot product isin S
= x-Yy where the dot product is in X
= G(x-y) since the dot product in X
is based on metric tensor G.

The by () we now have (x — Px) -y = G(x,y) = G(x,y) = 0. So there
exists a linear map P as claimed.
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Theorem 1V.2.01 (continued 2)

Proof continued. So
G/(G,("(Gx),y) = G(sy)
= s-y where the dot product isin S
= x-Yy where the dot product is in X
= G(x-y) since the dot product in X
is based on metric tensor G.

The by () we now have (x — Px) -y = G(x,y) = G(x,y) = 0. So there
exists a linear map P as claimed.

For uniqueness, suppose Q : X — S is a linear map such that
(x—Qx)-y=0forallye S and x € X. Then, forally € S and x € X
we have
(x— Px— (x— Qx)) -y = G(x - Px — (x — Qx),y)
=G(Qx — Px,y) = (Qx — Px) -y = 0.
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Theorem 1V.2.01 (continued 3)

Theorem IV.2.01. Let S be a non-degenerate subspace of a metric
vector space X. Then there is a unique linear operator P : X — S such
that (x —Rx)-y=0forally € S.

Proof continued. Since G is non-degenerate on S by hypothesis (that is,
S is a non-degenerate subspace of X), and Qx — Px € S (since Qx,

Px € S by hypothesis, since P,Q : X — S), then we must have Qx = Px
for all x € X. That is, P = Q and the linear map is unique. Ol
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Corollary 1V.2.02

Corollary 1V.2.02. The projection operator P onto S is idempotent. That
is, P(Px) = Px for all x € X.
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Corollary 1V.2.02

Corollary 1V.2.02. The projection operator P onto S is idempotent. That
is, P(Px) = Px for all x € X.

Proof. Let x € X and say y = Px. Since P is a projection operator, then
(y=Px)-yy=0forally €S. Buty=Pxe€ SsinceP: X — Sand G is
non-degenerate on S (by definition) so y = Py = 0 and y = Py. Therefore
y = Px = Py = P(Py). Since x € X is arbitrary, then Px = P(Px) for all
x € X, as claimed. ]
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Lemma IV.2.04

Lemma 1V.2.04. For any non-degenerate subspace S of X, each x € X
can be uniquely expressed as x =s +t where x € S and f € S+,
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Lemma IV.2.04

Lemma 1V.2.04. For any non-degenerate subspace S of X, each x € X
can be uniquely expressed as x =s +t where x € S and f € S+,

Proof. Let P be the orthogonal projection onto S. Set s = Px and
t=x—Px Thense Sandte St by the definition of P, and x = s + t.
Since P is the unique orthogonal projection onto S by Theorem 1V.2.01,
then s = Px is unique and so t = x — Px is unique, as claimed. []
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Corollary IV.2.06

Corollary 1V.2.06. If G is non-degenerate on S, it is non-degenerate on
st
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Corollary IV.2.06

Corollary 1V.2.06. If G is non-degenerate on S, it is non-degenerate on
st

Proof. Recall that by definition, G in non-degenerate on S if
G(x,y)=x-y=0forall y € S implies x = 0. Let x € S*. Then
x-t+x-s=0foralltcStandsec S, orx-(t+s)=0forallteSt
ands € S.
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Corollary IV.2.06

Corollary 1V.2.06. If G is non-degenerate on S, it is non-degenerate on
st

Proof. Recall that by definition, G in non-degenerate on S if
G(x,y)=x-y=0forall y € S implies x = 0. Let x € S*. Then
x-t+x-s=0foralltcStandsec S, orx-(t+s)=0forallteSt
and s € S. Since by Lemma 1V.2.04, every element y of X is of the form
y = s+t then we have x -y = G(x,y) =0 for all y € X. Since G is
non-degenerate on X then this implies x = 0. Therefore G is
non-degenerate on S+, as claimed. O

Differential Geometry May 9,2019 9 /13



Lemma IV.2. A

Lemma IV.2.A. Properties of Adjoint.
For A and B linear operators on a metric vector space (X, G) we have:

(a) 1T =1 where I is the identity operator.
(b) (AT)T =A.
(c) (AB)T =BTAT.
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Lemma IV.2.A

Lemma IV.2.A

Lemma IV.2.A. Properties of Adjoint.

For A and B linear operators on a metric vector space (X, G) we have:
(a) 1T =1 where I is the identity operator.
(b) (AT)T =A.
(c) (AB)T =BTAT.

Proof. (a) We have Ix-y = x - ly for all x,y € X, so I =1 (since the
transpose of a linear operator is unique).
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Lemma IV.2. A

Lemma IV.2.A. Properties of Adjoint.
For A and B linear operators on a metric vector space (X, G) we have:

(a) 1T =1 where I is the identity operator.
(b) (AT)T =A.
(c) (AB)T =BTAT.

Proof. (a) We have Ix-y = x - ly for all x,y € X, so I =1 (since the
transpose of a linear operator is unique).

(b) By the symmetry of G (and so the symmetry of the dot product) we
have for all x,y € X thaty-ATx=ATx -y =x- Ay and
y-ATx=(AT)Ty.x=x-(AT)Ty. Sox-Ay =x(AT)Ty or

x-(Ay — (AT)Ty) =0 for all x € X. So the non-degeneracy of G implies
Ay — (AT)Ty =0, or Ay = (AT)Ty. Since this holds for all y € X then
A=(AT)T.
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Lemma IV.2.A (continued)

Lemma IV.2.A. Properties of Adjoint.
For A and B linear operators on a metric vector space (X, G) we have:

(a) 1T =1 where | is the identity operator.
(b) (AT)T =A.
(c) (AB)T =BTAT.
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Lemma IV.2.A (continued)

Lemma IV.2.A. Properties of Adjoint.
For A and B linear operators on a metric vector space (X, G) we have:

(a) 1T =1 where | is the identity operator.
(b) (AT)T =A.
(c) (AB)T =BTAT.

Proof (continued). (c) Notice that AB is also a linear operator on
(X, G). Forall x,y € X we have

(AB)"x-y=x-(ABy) =A"x-By=B"A'x.y.
So (AB)"x-y—BTATx.-y=((AB)T —BTATx).-y=0forally € X.
So the non-degenerate of G implies (AB)"x —BTATx =0 or

(AB)"x=BTATx=BTAT = x. Since this holds for all x € X then
(AB)T =BTAT. O

Differential Geometry May 9, 2019 11 /13



Lemma 1V.2.09

Lemma 1V.2.09. An operator A on a metric vector space (X, G) is
orthogonal if and only if ATA = 1.

Differential Geometry May 9, 2010 1213



Lemma 1V.2.09

Lemma 1V.2.09. An operator A on a metric vector space (X, G) is
orthogonal if and only if ATA = 1.

Proof. Let x € X. Then Ax- Ay =x -y for ally € X (thatis, Ais
orthogonal) if and only if (AT Ax) -y = x - y by the definition of adjoint.
This is equivalent to (ATAx)-y —x-y =0 or (ATAx —x) -y = 0 for all
y € X. Since G is non-degenerate (by the definition of metric tensor) then
this is equivalent to ATAx — x = 0 or, since x is an arbitrary element of
X, ATA =1, O
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Lemma IV.2.11

Lemma 1V.2.11. Orthogonal projection P onto a non-degenerate
subspace S of a metric vector space X is a self adjoint operator.
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Lemma IV.2.11

Lemma IV.2.11

Lemma 1V.2.11. Orthogonal projection P onto a non-degenerate
subspace S of a metric vector space X is a self adjoint operator.

Proof. Let x=s+tandy=s' 4t wheres,s' € Sand t,t' € St (by
Lemma IV.2.04, the choices of s,s’, t,t’ are unique). Then

Px-y = P(s+t)-(s+t)
= s-(s'+t)sincePx=P(s+t)=s
= s-s+s-t

= s-s sinces-t' =0 because t’ € S+.
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Lemma IV.2.11

Lemma IV.2.11

Lemma 1V.2.11. Orthogonal projection P onto a non-degenerate
subspace S of a metric vector space X is a self adjoint operator.

Proof. Let x=s+tandy=s' 4t wheres,s' € Sand t,t' € St (by
Lemma IV.2.04, the choices of s,s’, t,t’ are unique). Then

Px-y = P(s+t)-(s+t)
= s-(s+t)sincePx=P(s+t)=s
= s-§+s-t
s-s sinces-t' =0 because t’ € S+.

Similarly,
x - Py=(s+t)-P(s+t)=(s+t)-s=s-§+t-§=s-¢,

so that Px -y = x - Py. Since this holds for all x,y € X, then P” = P and
P is self adjoint, as claimed. Ol
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