Differential Geometry

Chapter IV. Metric Vector Spaces IV.3. Coordinates—Proofs of Theorems

Table of contents

- 1 Lemma IV.3.04
- 2 Lemma IV.3.06
- 3 Theorem IV.3.05
- Theorem IV.3.08
- 5 Corollary IV.3.10. Sylvester's Law of Inertia
- 6 Lemma IV.3.11
- 7 Lemma IV.3.13
- 8 Lemma IV.3.14
 - 9 Lemma IV.3.16

Lemma IV.3.04. For $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ an orthonormal basis for metric vector space (X, \mathbf{G}) in β coordinates we have $g_{ij} = \pm \delta_{ij}$.

Proof. By Note IV.3.A, we have $g_{ij} = \mathbf{G}(\mathbf{b}_i, \mathbf{b}_j)$. Since β is an orthonormal set, for $i \neq j$ we have $g_{ij} = \mathbf{G}(\mathbf{b}_i, \mathbf{b}_j) = 0$. In a metric vector space, $\|\mathbf{x}\| = \sqrt{|\mathbf{G}(\mathbf{x}, \mathbf{x})|}$, so we must have $|\mathbf{G}(\mathbf{b}_i, \mathbf{b}_j)| = 1$ or $\mathbf{G}(\mathbf{b}_i, \mathbf{b}_j) = \pm 1$. Hence $g_{ij} = \mathbf{G}(\mathbf{b}_i, \mathbf{b}_j) = \pm \delta_{ij}$, as claimed.

Lemma IV.3.04. For $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ an orthonormal basis for metric vector space (X, \mathbf{G}) in β coordinates we have $g_{ij} = \pm \delta_{ij}$.

Proof. By Note IV.3.A, we have $g_{ij} = \mathbf{G}(\mathbf{b}_i, \mathbf{b}_j)$. Since β is an orthonormal set, for $i \neq j$ we have $g_{ij} = \mathbf{G}(\mathbf{b}_i, \mathbf{b}_j) = 0$. In a metric vector space, $\|\mathbf{x}\| = \sqrt{|\mathbf{G}(\mathbf{x}, \mathbf{x})|}$, so we must have $|\mathbf{G}(\mathbf{b}_i, \mathbf{b}_j)| = 1$ or $\mathbf{G}(\mathbf{b}_i, \mathbf{b}_j) = \pm 1$. Hence $g_{ij} = \mathbf{G}(\mathbf{b}_i, \mathbf{b}_j) = \pm \delta_{ij}$, as claimed.

Lemma IV.3.06. Nontrivial metric vector space (X, \mathbf{G}) possesses at least one non-null vector.

Proof. ASSUME not; i.e., assume $\mathbf{G}(\mathbf{x}, \mathbf{x}) = \mathbf{x} \cdot \mathbf{x} = 0$ for all $\mathbf{x} \in X$. Then $(\mathbf{y} + \mathbf{z}) \cdot (\mathbf{y} + \mathbf{z}) = 0$ for all $\mathbf{y}, \mathbf{z} \in X$ and so $\mathbf{y} \cdot \mathbf{y} + 2\mathbf{y} \cdot \mathbf{z} + \mathbf{z} \cdot \mathbf{z} = 0$ and $\mathbf{y} \cdot \mathbf{z} = -1/2(\mathbf{y} \cdot \mathbf{y} + \mathbf{z} \cdot \mathbf{z}) = 0$ for all $\mathbf{y}, \mathbf{z} \in X$. But then $\mathbf{G}(\mathbf{y}, \mathbf{z}) = 0$ for all $\mathbf{y}, \mathbf{z} \in X$ and \mathbf{G} is not non-degenerate, a CONTRADICTION to the definition of metric vector space. So the assumption is false and hence there is some $\mathbf{x} \in X$ such that $\mathbf{G}(\mathbf{x}, \mathbf{x}) = \mathbf{x} \cdot \mathbf{x} = 0$. That is, there is some non-null $\mathbf{x} \in X$, as claimed.

Lemma IV.3.06. Nontrivial metric vector space (X, \mathbf{G}) possesses at least one non-null vector.

Proof. ASSUME not; i.e., assume $\mathbf{G}(\mathbf{x}, \mathbf{x}) = \mathbf{x} \cdot \mathbf{x} = 0$ for all $\mathbf{x} \in X$. Then $(\mathbf{y} + \mathbf{z}) \cdot (\mathbf{y} + \mathbf{z}) = 0$ for all $\mathbf{y}, \mathbf{z} \in X$ and so $\mathbf{y} \cdot \mathbf{y} + 2\mathbf{y} \cdot \mathbf{z} + \mathbf{z} \cdot \mathbf{z} = 0$ and $\mathbf{y} \cdot \mathbf{z} = -1/2(\mathbf{y} \cdot \mathbf{y} + \mathbf{z} \cdot \mathbf{z}) = 0$ for all $\mathbf{y}, \mathbf{z} \in X$. But then $\mathbf{G}(\mathbf{y}, \mathbf{z}) = 0$ for all $\mathbf{y}, \mathbf{z} \in X$ and \mathbf{G} is not non-degenerate, a CONTRADICTION to the definition of metric vector space. So the assumption is false and hence there is some $\mathbf{x} \in X$ such that $\mathbf{G}(\mathbf{x}, \mathbf{x}) = \mathbf{x} \cdot \mathbf{x} = 0$. That is, there is some non-null $\mathbf{x} \in X$, as claimed.

Theorem IV.3.05. Every metric vector space (X, \mathbf{G}) possess at least one orthonormal basis.

Proof. By Lemma IV.3.06, there is non-null $\mathbf{x}_1 \in X$ such that $\mathbf{x}_1 \cdot \mathbf{x}_1 \neq 0$. Set $\mathbf{b}_1 = \frac{\mathbf{x}_1}{\|\mathbf{x}_1\|_{\mathbf{G}}}$. Now suppose that inductively for $1 \le k < n$ we have $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ an orthonormal set in X. Let $B_k = \operatorname{span}(\mathbf{B}_1, \mathbf{b}_2, \dots, \mathbf{b}_k)$. For $x \in B_k$, say $\mathbf{x} = x^i \mathbf{b}_i$ where $i = 1, 2, \dots, k$, if $\mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} = 0$ for all $\mathbf{y} \in B_k$ then, in particular, $x^i = \mathbf{x} \cdot \mathbf{b}_i = 0$ for $i = 1, 2, \dots, k$ and so $\mathbf{x} = \mathbf{0}$. That is, **G** is non-degenerate on B_k .

Theorem IV.3.05. Every metric vector space (X, \mathbf{G}) possess at least one orthonormal basis.

Proof. By Lemma IV.3.06, there is non-null $\mathbf{x}_1 \in X$ such that $\mathbf{x}_1 \cdot \mathbf{x}_1 \neq 0$. Set $\mathbf{b}_1 = \frac{\mathbf{x}_1}{\|\mathbf{x}_1\|_{\mathbf{C}}}$. Now suppose that inductively for $1 \le k < n$ we have $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ an orthonormal set in X. Let $B_k = \operatorname{span}(\mathbf{B}_1, \mathbf{b}_2, \dots, \mathbf{b}_k)$. For $x \in B_k$, say $\mathbf{x} = x^i \mathbf{b}_i$ where i = 1, 2, ..., k, if $\mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} = 0$ for all $\mathbf{y} \in B_k$ then, in particular, $x^i = \mathbf{x} \cdot \mathbf{b}_i = 0$ for $i = 1, 2, \dots, k$ and so $\mathbf{x} = \mathbf{0}$. That is, **G** is non-degenerate on B_k . By Corollary IV.2.05 dim $(B_{\nu}^{\perp}) = n - k \neq 0$ and by Corollary IV.2.06 **G** is non-degenerate on B_{ν}^{\perp} . So by Lemma IV.3.06 again, there is non-cull $\mathbf{x}_{k+1} \in B_{\nu}^{\perp}$. Set $\mathbf{b}_{k+1} = \frac{\mathbf{x}_{k+1}}{\|\mathbf{x}_{k+1}\|_{\mathbf{C}}}$. Then \mathbf{b}_{k+1} is a unit vector orthogonal to $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$. That is, $\{\mathbf{b} - 1, \mathbf{b}_2, \dots, \mathbf{b}_{k+1}\}$ is an orthonormal set. So by Mathematical Induction, there is an orthonormal set $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ in X.

Theorem IV.3.05. Every metric vector space (X, \mathbf{G}) possess at least one orthonormal basis.

Proof. By Lemma IV.3.06, there is non-null $\mathbf{x}_1 \in X$ such that $\mathbf{x}_1 \cdot \mathbf{x}_1 \neq 0$. Set $\mathbf{b}_1 = \frac{\mathbf{x}_1}{\|\mathbf{x}_1\|_{\mathbf{C}}}$. Now suppose that inductively for $1 \le k < n$ we have $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ an orthonormal set in X. Let $B_k = \operatorname{span}(\mathbf{B}_1, \mathbf{b}_2, \dots, \mathbf{b}_k)$. For $x \in B_k$, say $\mathbf{x} = x^i \mathbf{b}_i$ where i = 1, 2, ..., k, if $\mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} = 0$ for all $\mathbf{y} \in B_k$ then, in particular, $x^i = \mathbf{x} \cdot \mathbf{b}_i = 0$ for $i = 1, 2, \dots, k$ and so $\mathbf{x} = \mathbf{0}$. That is, **G** is non-degenerate on B_k . By Corollary IV.2.05 dim $(B_{\nu}^{\perp}) = n - k \neq 0$ and by Corollary IV.2.06 **G** is non-degenerate on B_{k}^{\perp} . So by Lemma IV.3.06 again, there is non-cull $\mathbf{x}_{k+1} \in B_{k}^{\perp}$. Set $\mathbf{b}_{k+1} = \frac{\mathbf{x}_{k+1}}{\|\mathbf{x}_{k+1}\|_{\mathbf{C}}}$. Then \mathbf{b}_{k+1} is a unit vector orthogonal to $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$. That is, $\{\mathbf{b} - 1, \mathbf{b}_2, \dots, \mathbf{b}_{k+1}\}$ is an orthonormal set. So by Mathematical Induction, there is an orthonormal set $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ in X. By Exercise IV.3.2, $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is linearly independent and, since dim(X) = n, is Differential Geometry

March 27, 2024

5/19

Theorem IV.3.05. Every metric vector space (X, \mathbf{G}) possess at least one orthonormal basis.

Proof. By Lemma IV.3.06, there is non-null $\mathbf{x}_1 \in X$ such that $\mathbf{x}_1 \cdot \mathbf{x}_1 \neq 0$. Set $\mathbf{b}_1 = \frac{\mathbf{x}_1}{\|\mathbf{x}_1\|_{\mathbf{C}}}$. Now suppose that inductively for $1 \le k < n$ we have $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ an orthonormal set in X. Let $B_k = \operatorname{span}(\mathbf{B}_1, \mathbf{b}_2, \dots, \mathbf{b}_k)$. For $x \in B_k$, say $\mathbf{x} = x^i \mathbf{b}_i$ where i = 1, 2, ..., k, if $\mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} = 0$ for all $\mathbf{y} \in B_k$ then, in particular, $x^i = \mathbf{x} \cdot \mathbf{b}_i = 0$ for $i = 1, 2, \dots, k$ and so $\mathbf{x} = \mathbf{0}$. That is, **G** is non-degenerate on B_k . By Corollary IV.2.05 dim $(B_{\nu}^{\perp}) = n - k \neq 0$ and by Corollary IV.2.06 **G** is non-degenerate on B_{k}^{\perp} . So by Lemma IV.3.06 again, there is non-cull $\mathbf{x}_{k+1} \in B_{k}^{\perp}$. Set $\mathbf{b}_{k+1} = \frac{\mathbf{x}_{k+1}}{\|\mathbf{x}_{k+1}\|_{\mathbf{C}}}$. Then \mathbf{b}_{k+1} is a unit vector orthogonal to $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$. That is, $\{\mathbf{b} - 1, \mathbf{b}_2, \dots, \mathbf{b}_{k+1}\}$ is an orthonormal set. So by Mathematical Induction, there is an orthonormal set $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ in X. By Exercise IV.3.2, $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is linearly independent and, since dim(X) = n, is an orthonormal basis.

Differential Geometry

Theorem IV.3.08. For any two orthonormal ordered bases $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ and $\beta^* = {\mathbf{b}'_1, \mathbf{b}'_2, \dots, \mathbf{b}'_n}$ for a metric vector space (X, \mathbf{G}) with

$$\mathbf{b}_i \cdot \mathbf{b}_j = \begin{cases} +1 \text{ if } i \leq k \\ -1 \text{ if } i > k \end{cases} \text{ and } \mathbf{b}'_i \cdot \mathbf{b}'_j = \begin{cases} +1 \text{ if } i \leq \ell \\ -1 \text{ if } i > \ell, \end{cases}$$

we have $k = \ell$.

Proof. If k = n then **G** is positive definite and so $\ell = n$. If k = 0 then **G** is negative definite and so $\ell = 0$. So, without loss of generality, we take 0 < k < n. Let $N = \text{span}(\mathbf{b}_{k+1}, \mathbf{b}_{k+2}, \dots, \mathbf{b}_n)$. Then **G** is negative definite since for $\mathbf{x} = x^i \mathbf{b}_{k+i} \in N$ we have

$$\mathbf{G}(\mathbf{x},\mathbf{x}) = \mathbf{G}(x^{i}\mathbf{b}_{k+i}, x^{i}\mathbf{b}_{k+i}) = \sum_{i=1}^{n-k} - (x^{i})^{2}.$$

Theorem IV.3.08. For any two orthonormal ordered bases $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ and $\beta^* = {\mathbf{b}'_1, \mathbf{b}'_2, \dots, \mathbf{b}'_n}$ for a metric vector space (X, \mathbf{G}) with

$$\mathbf{b}_i \cdot \mathbf{b}_j = \begin{cases} +1 \text{ if } i \leq k \\ -1 \text{ if } i > k \end{cases} \text{ and } \mathbf{b}'_i \cdot \mathbf{b}'_j = \begin{cases} +1 \text{ if } i \leq \ell \\ -1 \text{ if } i > \ell \end{cases}$$

we have $k = \ell$.

Proof. If k = n then **G** is positive definite and so $\ell = n$. If k = 0 then **G** is negative definite and so $\ell = 0$. So, without loss of generality, we take 0 < k < n. Let $N = \text{span}(\mathbf{b}_{k+1}, \mathbf{b}_{k+2}, \dots, \mathbf{b}_n)$. Then **G** is negative definite since for $\mathbf{x} = x^i \mathbf{b}_{k+i} \in N$ we have

$$\mathbf{G}(\mathbf{x},\mathbf{x}) = \mathbf{G}(x^{i}\mathbf{b}_{k+i},x^{i}\mathbf{b}_{k+i}) = \sum_{i=1}^{n-k} - (x^{i})^{2}.$$

Theorem IV.3.08 (continued 1)

Proof (continued). Let *W* be a subspace of *X* on which **G** is positive definite with basis $\omega = {\omega_1, \omega_2, \dots, \omega_r}$. Consider the set $P = {\omega_1, \omega_2, \dots, \omega_r, \mathbf{b}_{k+1}, \mathbf{b}_{k+2}, \dots, \mathbf{b}_n}$. If $a^1\omega_1 + a^2\omega_2 + \dots + a^r\omega_r + a^{r+1}\mathbf{b}_{k+1} + a^{r+2}\mathbf{b}_{k+2} + \dots + a^{r+(n-k)}\mathbf{b}_n = \mathbf{0}$.

Then with the Einstein summation convention this implies

$$a^{i}\omega_{i} = -a^{r+j}\mathbf{b}_{k+j} \tag{(*)}$$

and hence

$$(a^{i}\omega_{i})\cdot(a^{i}\omega_{i})=(-a^{r+j}\mathbf{b}_{k+j})\cdot(-a^{r+j}\mathbf{b}_{k+j}). \qquad (**)$$

But **G** (and so dot products) is nonnegative on W and nonpositive on N, so both sides of (**) must be zero (since $a^i \omega_i \in W$ and $-a^{r+j} \mathbf{b}_{k+j} \in N$). Therefore both sides of (*) are **0** (since the positive/negative definiteness of **G** implies from the dot product in (**) that the constituent vectors in (**) must be **0**). So $a^i = 0$ for i = 1, 2, ..., t + (n - k); that is, set P is a linearly independent set.

Theorem IV.3.08 (continued 1)

Proof (continued). Let *W* be a subspace of *X* on which **G** is positive definite with basis $\omega = {\omega_1, \omega_2, ..., \omega_r}$. Consider the set $P = {\omega_1, \omega_2, ..., \omega_r, \mathbf{b}_{k+1}, \mathbf{b}_{k+2}, ..., \mathbf{b}_n}$. If $a^1\omega_1 + a^2\omega_2 + \cdots + a^r\omega_r + a^{r+1}\mathbf{b}_{k+1} + a^{r+2}\mathbf{b}_{k+2} + \cdots + a^{r+(n-k)}\mathbf{b}_n = \mathbf{0}$.

Then with the Einstein summation convention this implies

$$a^{i}\omega_{i} = -a^{r+j}\mathbf{b}_{k+j} \tag{(*)}$$

and hence

$$(a^{i}\omega_{i})\cdot(a^{i}\omega_{i})=(-a^{r+j}\mathbf{b}_{k+j})\cdot(-a^{r+j}\mathbf{b}_{k+j}). \qquad (**)$$

But **G** (and so dot products) is nonnegative on W and nonpositive on N, so both sides of (**) must be zero (since $a^i \omega_i \in W$ and $-a^{r+j} \mathbf{b}_{k+j} \in N$). Therefore both sides of (*) are **0** (since the positive/negative definiteness of **G** implies from the dot product in (**) that the constituent vectors in (**) must be **0**). So $a^i = 0$ for i = 1, 2, ..., t + (n - k); that is, set P is a linearly independent set.

Theorem IV.3.08 (continued 2)

Theorem IV.3.08. For any two orthonormal ordered bases $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ and $\beta^* = {\mathbf{b}'_1, \mathbf{b}'_2, \dots, \mathbf{b}'_n}$ for a metric vector space (X, \mathbf{G}) with

$$\mathbf{b}_i \cdot \mathbf{b}_j = \begin{cases} +1 \text{ if } i \leq k \\ -1 \text{ if } i > k \end{cases} \text{ and } \mathbf{b}'_i \cdot \mathbf{b}'_j = \begin{cases} +1 \text{ if } i \leq \ell \\ -1 \text{ if } i > \ell, \end{cases}$$

we have $k = \ell$.

Proof (continued). Since a linearly independent set of vectors in an *n*-dimensional vector space can have at most *n* elements, then $r + (n - k) \le n$ or $r \le k$ or dim $(W) \le k$ where *W* is an arbitrary subspace of *X* on which **G** is positive definite. Since **G** is positive definite on span $(\mathbf{b}'_1, \mathbf{b}'_2, \ldots, \mathbf{b}'_\ell)$ then we must have $\ell \le k$. By a similar argument (interchanging the roles of β and β' and hence interchanging the roles of *k* and ℓ) we have $k \le \ell$ and therefore $k = \ell$, as claimed.

Corollary IV.3.10. Sylvester's Law of Inertia

Corollary IV.3.10. Sylvester's Law of Inertia.

Let (X, \mathbf{G}) be a metric vector space. For any symmetric bilinear form $\mathbf{F} : X \times X \to \mathbb{R}$, there is a choice of basis for which \mathbf{F} has the form

$$\mathbf{F}(x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{n}, x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{n})$$

= $(x^{1})^{2} + (x^{2})^{2} + \dots + (x^{n})^{2} - (x^{k+1})^{2} - (x^{k+2})^{2} - \dots - (x^{k+\ell})^{2}$

where $k + \ell \leq n$. Unless s or ℓ is zero, the subspace V^+ spanned by the basic vectors with $\mathbf{F}(\mathbf{b}_i, \mathbf{b}_j) = +1$ depends on the choice of basis; so does the subspace V^- spanned by those with $\mathbf{F}(\mathbf{b}_i, \mathbf{b}_i) = -1$. However, V^0 , spanned by those with $\mathbf{F}(\mathbf{b}_i, \mathbf{b}_j) = 0$, depends only on \mathbf{F} , as do k and ℓ .

Proof. Set $V^N = \{\mathbf{x} \in X \mid \mathbf{F}(\mathbf{x}, \mathbf{y}) = 0 \text{ for all } \mathbf{y} \in X\}$. By linearity in the first term of \mathbf{F} , we see that V^N is closed under the vector sums and scalar multiplication and hence is a subspace of X. Let $\dim(V^N) = n - i$ and let $\{\mathbf{b}_{i+1}, \mathbf{b}_{i+2}, \dots, \mathbf{b}_n\}$ be a basis of V^N . Extend this to a basis of X of the form $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_i, \mathbf{b}_{i+1}, \dots, \mathbf{b}_n\}$ (which can be done by finding a basis for $(V^N)^{\perp}$ which is of dimension i by Corollary IV.2.05).

Corollary IV.3.10. Sylvester's Law of Inertia

Corollary IV.3.10. Sylvester's Law of Inertia.

Let (X, \mathbf{G}) be a metric vector space. For any symmetric bilinear form $\mathbf{F} : X \times X \to \mathbb{R}$, there is a choice of basis for which \mathbf{F} has the form

$$\mathbf{F}(x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{n}, x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{n})$$

= $(x^{1})^{2} + (x^{2})^{2} + \dots + (x^{n})^{2} - (x^{k+1})^{2} - (x^{k+2})^{2} - \dots - (x^{k+\ell})^{2}$

where $k + \ell \leq n$. Unless s or ℓ is zero, the subspace V^+ spanned by the basic vectors with $\mathbf{F}(\mathbf{b}_i, \mathbf{b}_i) = +1$ depends on the choice of basis; so does the subspace V^- spanned by those with $\mathbf{F}(\mathbf{b}_i, \mathbf{b}_i) = -1$. However, V^0 , spanned by those with $\mathbf{F}(\mathbf{b}_i, \mathbf{b}_i) = 0$, depends only on \mathbf{F} , as do k and ℓ . **Proof.** Set $V^N = {\mathbf{x} \in X | \mathbf{F}(\mathbf{x}, \mathbf{y}) = 0 \text{ for all } \mathbf{y} \in X}$. By linearity in the first term of **F**, we see that V^N is closed under the vector sums and scalar multiplication and hence is a subspace of X. Let dim $(V^N) = n - i$ and let $\{\mathbf{b}_{i+1}, \mathbf{b}_{i+2}, \dots, \mathbf{b}_n\}$ be a basis of V^N . Extend this to a basis of X of the form $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_i, \mathbf{b}_{i+1}, \dots, \mathbf{b}_n\}$ (which can be done by finding a basis for $(V^N)^{\perp}$ which is of dimension *i* by Corollary IV.2.05).

Corollary IV.3.10 (continued 1)

Proof (continued). Denote by W the subspace span $(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_i)$ of X. Let $\mathbf{w} \in W$. Then $\mathbf{F}(\mathbf{w}, \mathbf{v}) = 0$ for all $\mathbf{v} \in W$ implies

 $\mathbf{F}(\mathbf{w}, x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \cdots, x^{i}\mathbf{b}_{i}) + x^{i+1}\mathbf{F}(\mathbf{w}, \mathbf{b}_{i+1}) + x^{i+2}\mathbf{F}(\mathbf{w}, \mathbf{b}_{i+2}) + \cdots$

 $+x^n \mathbf{F}(\mathbf{w}, \mathbf{b}_n) = 0$

for all (x^1, x^2, \dots, x^n) since $x^1 \mathbf{b}_1 + x^2 \mathbf{b}_2 + \dots + x^i \mathbf{b}_i \in W$ and $\mathbf{b}_{i+1}, \mathbf{b}_{i+2}, \dots, \mathbf{b}_n \in (V^N)^{\perp}$ and $W \subset (V^n)^{\perp}$. So by the bilinearity of **F** we have $F(w, x^1b_1 + x^2b_2 + \dots + x^nb_n) = 0$ for all (x^1, x^2, \dots, x^n) implies $\mathbf{F}(\mathbf{w}, \mathbf{x}) = 0$ for all $\mathbf{x} \in X$, which implies $\mathbf{w} \in V^N$ by the definition of V^N . But $\mathbf{w} \in W \subset (V^N)^{\perp}$. Since $\mathbf{w} \in V^N$ then $\mathbf{w} \in \text{span}(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_i)$. hence $\mathbf{w} = \mathbf{0}$. So the restricted symmetric bilinear form $\mathbf{F}|_{W \times W}$ is non-degenerate. So (W, \mathbf{F}) is a metric vector space and by Theorem IV.3.05 there is an orthonormal basis for W. Replace basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_i\}$ of W with this orthonormal basis of W (which we also denote as $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_i\}$).

Corollary IV.3.10 (continued 1)

Proof (continued). Denote by W the subspace span $(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_i)$ of X. Let $\mathbf{w} \in W$. Then $\mathbf{F}(\mathbf{w}, \mathbf{v}) = 0$ for all $\mathbf{v} \in W$ implies

 $\mathbf{F}(\mathbf{w}, x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \cdots, x^{i}\mathbf{b}_{i}) + x^{i+1}\mathbf{F}(\mathbf{w}, \mathbf{b}_{i+1}) + x^{i+2}\mathbf{F}(\mathbf{w}, \mathbf{b}_{i+2}) + \cdots$

 $+x^n \mathbf{F}(\mathbf{w}, \mathbf{b}_n) = 0$

for all (x^1, x^2, \dots, x^n) since $x^1 \mathbf{b}_1 + x^2 \mathbf{b}_2 + \dots + x^i \mathbf{b}_i \in W$ and $\mathbf{b}_{i+1}, \mathbf{b}_{i+2}, \dots, \mathbf{b}_n \in (V^N)^{\perp}$ and $W \subset (V^n)^{\perp}$. So by the bilinearity of **F** we have $\mathbf{F}(\mathbf{w}, x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \cdots + x^{n}\mathbf{b}_{n}) = 0$ for all $(x^{1}, x^{2}, \dots, x^{n})$ implies $\mathbf{F}(\mathbf{w}, \mathbf{x}) = 0$ for all $\mathbf{x} \in X$, which implies $\mathbf{w} \in V^N$ by the definition of V^N . But $\mathbf{w} \in W \subset (V^N)^{\perp}$. Since $\mathbf{w} \in V^N$ then $\mathbf{w} \in \text{span}(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_i)$. hence $\mathbf{w} = \mathbf{0}$. So the restricted symmetric bilinear form $\mathbf{F}|_{W \times W}$ is non-degenerate. So (W, \mathbf{F}) is a metric vector space and by Theorem IV.3.05 there is an orthonormal basis for W. Replace basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_i\}$ of W with this orthonormal basis of W (which we also denote as $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_i\}$).

Corollary IV.3.10 (continued 2)

Proof (continued). Then $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_i, \mathbf{b}_{i+1}, \dots, \mathbf{b}_n\}$ is a basis of X for which $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_i\}$ is an orthonormal set and $\mathbf{F}(\mathbf{b}_p, \mathbf{b}_q) = 0$ whenever $1 \le p \le i$ and $i+1 \le q \le n$ by the definition of V^N . By Theorem IV.3.08, there is $0 \le k \le i$ such that $\mathbf{b}_j \cdot \mathbf{b}_j = \begin{cases} +1 \text{ if } j \le k \\ -1 \text{ if } k < j \le i \end{cases}$ Then by the bilinearity of F,

$$F(x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{n}, x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{n})$$

$$= F(x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{n}, x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{i})$$

$$+ F(x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{n}, x^{i+1}\mathbf{b}_{i+1} + x^{i+2}\mathbf{b}_{i+2} + \dots + x^{n}\mathbf{b}_{n})$$

$$= F(x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{i}\mathbf{b}_{i}, x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{i}\mathbf{b}_{i})$$

$$+ F(x^{i+1}\mathbf{b}_{i+1} + x^{i+2}\mathbf{b}_{i+2} + \dots + x^{n}\mathbf{b}_{n}, x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{i}\mathbf{b}_{i}) + 0$$

$$= (x^{1})^{2} + (x^{2})^{2} + \dots + (x^{k})^{2} - (x^{k+1})^{2} - (x^{k+2})^{2} - \dots - (x^{k+\ell})^{2}$$

by the orthonormality of $\{x^1\mathbf{b}_1 + x^2\mathbf{b}_2 + \cdots + x^i\mathbf{b}_i\}$, where $K + \ell = i$. So the basis exists, as claimed.

Corollary IV.3.10 (continued 2)

Proof (continued). Then $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_i, \mathbf{b}_{i+1}, \dots, \mathbf{b}_n\}$ is a basis of X for which $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_i\}$ is an orthonormal set and $\mathbf{F}(\mathbf{b}_p, \mathbf{b}_q) = 0$ whenever $1 \le p \le i$ and $i+1 \le q \le n$ by the definition of V^N . By Theorem IV.3.08, there is $0 \le k \le i$ such that $\mathbf{b}_j \cdot \mathbf{b}_j = \begin{cases} +1 \text{ if } j \le k \\ -1 \text{ if } k < j \le i \end{cases}$ Then by the bilinearity of \mathbf{F} ,

$$\begin{aligned} \mathbf{F}(x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{n}, x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{n}) \\ &= \mathbf{F}(x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{n}, x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{i}) \\ &+ \mathbf{F}(x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{n}, x^{i+1}\mathbf{b}_{i+1} + x^{i+2}\mathbf{b}_{i+2} + \dots + x^{n}\mathbf{b}_{n}) \\ &= \mathbf{F}(x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{i}\mathbf{b}_{i}, x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{i}\mathbf{b}_{i}) \\ &+ \mathbf{F}(x^{i+1}\mathbf{b}_{i+1} + x^{i+2}\mathbf{b}_{i+2} + \dots + x^{n}\mathbf{b}_{n}, x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{i}\mathbf{b}_{i}) + 0 \\ &= (x^{1})^{2} + (x^{2})^{2} + \dots + (x^{k})^{2} - (x^{k+1})^{2} - (x^{k+2})^{2} - \dots - (x^{k+\ell})^{2} \\ &\text{the orthonormality of } \{x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{i}\mathbf{b}_{i}\}, \text{ where } K + \ell = i. \text{ So} \end{aligned}$$

the basis exists, as claimed.

by

Corollary IV.3.10 (continued 3)

Proof (continued). Now if k or ℓ is zero then \mathbf{F} is, respectively, negative definite and positive definite, regardless of the basis used for (W, \mathbf{F}) . When $k \neq 0 \neq \ell$, by Theorem IV.3.08, the choice of k (and hence the choice of ℓ) is independent of the basis of (W, \mathbf{F}) . So for $k \neq 0 \neq \ell$, the dimensions of V^+ and V^- are determined by \mathbf{F} , but the spaces themselves depend on the choice of the basis since $V^+ = \operatorname{span}(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n)$ and $V^- = \operatorname{span}(\mathbf{b}_{k+1}, \mathbf{b}_{k+2}, \dots, \mathbf{b}_{k+\ell})$. Space $V^0 = V^N = \{\mathbf{x} \in X \mid \mathbf{F}(\mathbf{x}, \mathbf{y}) = 0 \text{ for all } \mathbf{y} \in X\}$ depends only on \mathbf{F} , as claimed.

Lemma IV.3.11

Lemma IV.3.11. Let $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ be a basis for (X, \mathbf{G}) . Then the dual basis to β , $\beta^* = {\mathbf{b}^1, \mathbf{b}^2, \dots, \mathbf{b}^n}$, is an orthonormal basis in the dual metric \mathbf{G}^* on X^* if and only if β is an orthonormal basis for X.

Proof. Basis β of X is orthonormal if and only if $\mathbf{G}(\mathbf{b}_i, \mathbf{b}_i) = \mathbf{b}_i \cdot \mathbf{b}_j = \pm \delta_{ij}$, which is equivalent to

$$[g_{ij}] = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & 0 \\ 0 & 0 & \cdots & 0 & -1 \end{bmatrix} = M$$

(provided we employ the convention of listing the -1's "first"). Now $[g_{ij}] = M$ if and only if the inverse $[g_{ij}]^{-1} = [g^{ij}] = M$. Then by Note IV.3.C, $\mathbf{G}^*(\mathbf{b}_i, \mathbf{b}_j) = g^{ij}$ so that $[g^{ij}] = M$ if and only if β^* is orthonormal.

(

Lemma IV.3.11

Lemma IV.3.11. Let $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ be a basis for (X, \mathbf{G}) . Then the dual basis to β , $\beta^* = {\mathbf{b}^1, \mathbf{b}^2, \dots, \mathbf{b}^n}$, is an orthonormal basis in the dual metric \mathbf{G}^* on X^* if and only if β is an orthonormal basis for X.

Proof. Basis β of X is orthonormal if and only if $\mathbf{G}(\mathbf{b}_i, \mathbf{b}_i) = \mathbf{b}_i \cdot \mathbf{b}_j = \pm \delta_{ij}$, which is equivalent to

$$[g_{ij}] = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & 0 \\ 0 & 0 & \cdots & 0 & -1 \end{bmatrix} = M$$

(provided we employ the convention of listing the -1's "first"). Now $[g_{ij}] = M$ if and only if the inverse $[g_{ij}]^{-1} = [g^{ij}] = M$. Then by Note IV.3.C, $\mathbf{G}^*(\mathbf{b}_i, \mathbf{b}_j) = g^{ij}$ so that $[g^{ij}] = M$ if and only if β^* is orthonormal.

Lemma IV.3.13. If A is a linear operator on an inner product space (X, \mathbf{G}) , then $[\mathbf{A}^T]^{\beta}_{\beta} = ([\mathbf{A}]^{\beta}_{\beta})^t$ with respect to any orthonormal basis $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}.$

Proof. First, by definition, $\mathbf{G}_{\downarrow}\mathbf{b}_i = \mathbf{G}_{\downarrow}(\mathbf{b}_i) = \mathbf{x}^*$ where $\mathbf{x}^*(\mathbf{y}) = \mathbf{G}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{y} \in X$. So

$$(\mathbf{G}_{\downarrow}\mathbf{b}_i)(\mathbf{b}_j) = \mathbf{G}(\mathbf{b}_i,\mathbf{b}_j) = \mathbf{b}_i \cdot \mathbf{b}_j = \delta_{ij}$$

for all $\mathbf{b}_j \in \beta$. Also for $\mathbf{b}^i \in \beta^*$ we have $\mathbf{b}^i(\mathbf{b}_j) = \mathbf{b}^i \mathbf{b}_j = \delta_{ij}$ for all $\mathbf{b}_j \in \beta$. So $\mathbf{G}_{\downarrow}(\mathbf{b}_i) = \mathbf{b}^i$ (since these elements of X^* are equal on basis β).

Lemma IV.3.13. If A is a linear operator on an inner product space (X, \mathbf{G}) , then $[\mathbf{A}^T]^{\beta}_{\beta} = ([\mathbf{A}]^{\beta}_{\beta})^t$ with respect to any orthonormal basis $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}.$

Proof. First, by definition, $\mathbf{G}_{\downarrow}\mathbf{b}_i = \mathbf{G}_{\downarrow}(\mathbf{b}_i) = \mathbf{x}^*$ where $\mathbf{x}^*(\mathbf{y}) = \mathbf{G}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{y} \in X$. So

$$(\mathbf{G}_{\downarrow}\mathbf{b}_{i})(\mathbf{b}_{j}) = \mathbf{G}(\mathbf{b}_{i},\mathbf{b}_{j}) = \mathbf{b}_{i}\cdot\mathbf{b}_{j} = \delta_{ij}$$

for all $\mathbf{b}_j \in \beta$. Also for $\mathbf{b}^i \in \beta^*$ we have $\mathbf{b}^i(\mathbf{b}_j) = \mathbf{b}^i \mathbf{b}_j = \delta_{ij}$ for all $\mathbf{b}_j \in \beta$. So $\mathbf{G}_{\downarrow}(\mathbf{b}_i) = \mathbf{b}^i$ (since these elements of X^* are equal on basis β).

Lemma IV.3.13 (continued)

Lemma IV.3.13. If A is a linear operator on an inner product space (X, \mathbf{G}) , then $[\mathbf{A}^T]^{\beta}_{\beta} = ([\mathbf{A}]^{\beta}_{\beta})^t$ with respect to any orthonormal basis $\beta = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}.$

Proof (continued). Hence $[\mathbf{G}_{\downarrow}]^{\beta^*}_{\beta}$ is the identity matrix, and so is its inverse $[\mathbf{G}_{\uparrow}]^{\beta}_{\beta^*}$ (see Note IV.3.B). So

$$\begin{split} [\mathbf{A}^{T}]_{\beta}^{\beta} &= [\mathbf{G}_{\uparrow} A^{*} \mathbf{G}_{\downarrow}]_{\beta}^{\beta} \text{ by definition of } \mathbf{A}^{T} \\ &= [\mathbf{G}_{\uparrow}]_{\beta^{*}}^{\beta} [\mathbf{A}^{*}]_{\beta^{*}}^{\beta^{*}} [\mathbf{G}_{\downarrow}]_{\beta}^{\beta^{*}} \\ &= [\mathbf{A}^{*}]_{\beta^{*}}^{\beta^{*}} \text{ since } [\mathbf{G}_{\uparrow}]_{\beta^{*}}^{\beta^{*}} = [\mathbf{G}_{\downarrow}]_{\beta}^{\beta^{*}} = \mathcal{I} \\ &= ([\mathbf{A}]_{\beta}^{\beta})^{t} \text{ by Theorem III.1.A.} \end{split}$$

Lemma IV.3.14. If **A** is a linear operator on a metric vector space (X, \mathbf{G}) then with respect to orthonormal basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ we have

$$\left[\mathbf{A}^{\mathcal{T}}
ight]_{j}^{i}=\left(rac{g_{jj}}{g_{ii}}
ight)\left[\mathbf{A}
ight]_{i}^{j}=\left(rac{g_{jj}}{g_{ii}}
ight)\left[\left[\mathbf{A}
ight]_{j}^{t}
ight]_{j}^{i}$$

for $1 \leq i, j \leq n$, where $[\mathbf{A}]_{j}^{i} = a_{ij} = a_{j}^{i}$ is the entry in the *i*th row and *j*th column of $[\mathbf{A}]_{\beta}^{\beta}$ and there is no summation over *i* and *j* (though the Einstein convention implies it on the right hand side of the above equation).

Proof. First Ab_i has coordinate vector with respect to β of

$$[a_{ij}] [0 \ 0 \ \cdots \ 0 \ 1 \ 0 \ \cdots \ 0 \ 0]^t = [a_{1j} \ a_{2j} \ \cdots \ a_{nj}]^t$$

so that $\mathbf{A}\mathbf{b}_j = a_{kj}\mathbf{b}_k$. So we have

$$(\mathbf{A}\mathbf{b}_j) \cdot \mathbf{b}_{\ell} = (a_{kj}\mathbf{b}_k) \cdot \mathbf{b}_{\ell} = a_{kj}(\mathbf{b}_k \cdot \mathbf{b}_{\ell}) = a_{\ell j}\mathbf{b}_{\ell} \cdot \mathbf{b}_{\ell} = [\mathbf{A}]_j^{\ell}(\mathbf{b}_{\ell} \cdot \mathbf{b}_{\ell}). \quad (*)$$

Lemma IV.3.14. If **A** is a linear operator on a metric vector space (X, \mathbf{G}) then with respect to orthonormal basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ we have

$$\left[\mathbf{A}^{\mathcal{T}}
ight]_{j}^{i}=\left(rac{g_{jj}}{g_{ii}}
ight)\left[\mathbf{A}
ight]_{i}^{j}=\left(rac{g_{jj}}{g_{ii}}
ight)\left[\left[\mathbf{A}
ight]_{j}^{t}
ight]_{j}^{i}$$

for $1 \leq i, j \leq n$, where $[\mathbf{A}]_{j}^{i} = a_{ij} = a_{j}^{i}$ is the entry in the *i*th row and *j*th column of $[\mathbf{A}]_{\beta}^{\beta}$ and there is no summation over *i* and *j* (though the Einstein convention implies it on the right hand side of the above equation).

Proof. First Ab_i has coordinate vector with respect to β of

$$[a_{ij}][0 \ 0 \ \cdots \ 0 \ \frac{1}{j} \ 0 \ \cdots \ 0 \ 0]^t = [a_{1j} \ a_{2j} \ \cdots \ a_{nj}]^t$$

so that $\mathbf{A}\mathbf{b}_j = a_{kj}\mathbf{b}_k$. So we have

$$(\mathbf{A}\mathbf{b}_j) \cdot \mathbf{b}_{\ell} = (a_{kj}\mathbf{b}_k) \cdot \mathbf{b}_{\ell} = a_{kj}(\mathbf{b}_k \cdot \mathbf{b}_{\ell}) = a_{\ell j}\mathbf{b}_{\ell} \cdot \mathbf{b}_{\ell} = [\mathbf{A}]_j^{\ell}(\mathbf{b}_{\ell} \cdot \mathbf{b}_{\ell}). \quad (*)$$

Lemma IV.3.14 (continued 1)

Proof (continued). Let $[\mathbf{A}^T]^{\beta}_{\beta} = [\mathbf{A}^T] = [c_{ij}]$. Then $\mathbf{A}^T \mathbf{b}_{\ell} = c_{k\ell} \mathbf{b}_{\ell}$. So $(\mathbf{A}^{\mathsf{T}}\mathbf{b}_{\ell}) \cdot \mathbf{b}_{i} = (c_{k\ell}\mathbf{b}_{k}) \cdot \mathbf{b}_{i} = c_{k\ell}(\mathbf{b}_{k} \cdot \mathbf{b}_{i}) = c_{i\ell}\mathbf{b}_{i} \cdot \mathbf{b}_{i} = [\mathbf{A}^{\mathsf{T}}]_{\ell}^{i}(\mathbf{b}_{i} \cdot \mathbf{b}_{i}),$ or $[\mathbf{A}^T]^i_{\ell} = \frac{(\mathbf{A}^T \mathbf{b}_{\ell}) \cdot \mathbf{b}_i}{\mathbf{b}_{\ell} \cdot \mathbf{b}_{\ell}}$. Hence $[\mathbf{A}^{\mathsf{T}}]_{\ell}^{i} = \frac{(\mathbf{A}^{\mathsf{T}} \mathbf{b}_{\ell}) \cdot \mathbf{b}_{i}}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}}$ $= \frac{(\mathbf{G}_{\uparrow} \mathbf{A}^* \mathbf{G}_{\downarrow} \mathbf{b}_{\ell}) \cdot \mathbf{b}_i}{\mathbf{b}_i \cdot \mathbf{b}_i}$ by the definition of \mathbf{A}^T $= \frac{\mathbf{G}(\mathbf{G}_{\uparrow}\mathbf{A}^*\mathbf{G}_{\downarrow}\mathbf{b}_{\ell},\mathbf{b}_i)}{\mathbf{b}_i}$ since **G** determines dot products in (X, **G**) $= \frac{(\mathbf{A}^*\mathbf{G}_{\downarrow}\mathbf{b}_{\ell})(\mathbf{b}_i)}{\mathbf{b}_{i\perp}\mathbf{b}_{i\perp}} \text{ since } \mathbf{G}_{\uparrow}(\mathbf{x}^*) = \mathbf{x} \text{ where } \mathbf{x}^*(\mathbf{y}) = \mathbf{G}(\mathbf{x},\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{y} \in X$; see Theorem IV.1.09 and Note IV.1.A (here, $\mathbf{x}^* = \mathbf{A}^* \mathbf{G}_{\perp} \mathbf{b}_{\ell}$ and we take $\mathbf{y} = \mathbf{b}_i$)

Lemma IV.3.14 (continued 1)

Proof (continued). Let $[\mathbf{A}^T]^{\beta}_{\beta} = [\mathbf{A}^T] = [c_{ij}]$. Then $\mathbf{A}^T \mathbf{b}_{\ell} = c_{k\ell} \mathbf{b}_{\ell}$. So
$(\mathbf{A}^{T}\mathbf{b}_{\ell}) \cdot \mathbf{b}_{i} = (c_{k\ell}\mathbf{b}_{k}) \cdot \mathbf{b}_{i} = c_{k\ell}(\mathbf{b}_{k} \cdot \mathbf{b}_{i}) = c_{i\ell}\mathbf{b}_{i} \cdot \mathbf{b}_{i} = [\mathbf{A}^{T}]^{i}_{\ell}(\mathbf{b}_{i} \cdot \mathbf{b}_{i}),$
or $[\mathbf{A}^T]^i_\ell = \frac{(\mathbf{A}^T \mathbf{b}_\ell) \cdot \mathbf{b}_i}{\mathbf{b}_i \cdot \mathbf{b}_i}$. Hence
$[\mathbf{A}^{T}]_{\ell}^{i} = \frac{(\mathbf{A}^{T}\mathbf{b}_{\ell})\cdot\mathbf{b}_{i}}{\mathbf{b}_{i}\cdot\mathbf{b}_{i}}$
$= \frac{(\mathbf{G}_{\uparrow} \mathbf{A}^* \mathbf{G}_{\downarrow} \mathbf{b}_{\ell}) \cdot \mathbf{b}_i}{\mathbf{b}_i \cdot \mathbf{b}_i} \text{ by the definition of } \mathbf{A}^{\mathcal{T}}$
$= \frac{\mathbf{G}(\mathbf{G}_{\uparrow}\mathbf{A}^{*}\mathbf{G}_{\downarrow}\mathbf{b}_{\ell},\mathbf{b}_{i})}{\mathbf{b}_{i}\cdot\mathbf{b}_{i}} \text{ since } \mathbf{G} \text{ determines dot products in } (X,\mathbf{G})$
$= \frac{(\mathbf{A}^*\mathbf{G}_{\downarrow}\mathbf{b}_{\ell})(\mathbf{b}_i)}{\mathbf{b}_i \cdot \mathbf{b}_i} \text{ since } \mathbf{G}_{\uparrow}(\mathbf{x}^*) = \mathbf{x} \text{ where } \mathbf{x}^*(\mathbf{y}) = \mathbf{G}(\mathbf{x},\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$
for all $\mathbf{y} \in X$; see Theorem IV.1.09 and Note IV.1.A
(here, $\mathbf{x}^* = \mathbf{A}^* \mathbf{G}_{\downarrow} \mathbf{b}_\ell$ and we take $\mathbf{y} = \mathbf{b}_i$)

Lemma IV.3.14 (continued 2)

Proof (continued). $[\mathbf{A}^{T}]_{\ell}^{i} = \frac{(\mathbf{A}^{*}\mathbf{G}_{\downarrow}\mathbf{b}_{\ell})(\mathbf{b}_{i})}{\mathbf{b}_{i}\cdot\mathbf{b}_{i}}$ $= \frac{(\mathbf{g}_{\downarrow} \mathbf{b}_{\ell} \mathbf{A})(\mathbf{b}_{i})}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}}$ since $\mathbf{A}^{*}(\mathbf{f}) = \mathbf{f} \circ \mathbf{A}$ by the definition of dual map $= \frac{(\mathbf{G}_{\downarrow} \mathbf{b}_{\ell})(\mathbf{A} \mathbf{b}_{\ell})}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}}$ since function composition is associative $= \frac{b_\ell \cdot (Ab_i)}{b_i \cdot b_i} \text{ since } G_{\downarrow}(x) = x^* \text{ where } x^*(y) = G(x,y) = x \cdot y$ for all $\mathbf{y} \in X$; see Theorem IV.1.09 $= \frac{[\mathbf{A}]_{i}^{\ell} \mathbf{b}_{\ell} \cdot \mathbf{b}_{\ell}}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}} \text{ by } (*)$ $= [\mathbf{A}]^{\ell}_{i} \frac{g_{\ell\ell}}{g_{ii}},$ or $[\mathbf{A}^T]_i^i = [\mathbf{A}]_i^j g_{ii}/g_{jj}$, as claimed.

Lemma IV.3.16. A linear operator **A** on an inner product space is orthogonal if and only if with respect to an orthonormal basis it has a matrix whose columns (respectively, rows) regarded as column (respectively, row) vectors form an orthonormal set in the standard inner product on \mathbb{R}^n .

Proof. By Lemma IV.2.09, **A** is orthogonal if and only if $\mathbf{A}^T \mathbf{A} = \mathbf{I}$. Let $[\mathbf{A}^T] = [c_j^i] = c_{ij}$. Then $\mathbf{A}^T \mathbf{A} = \mathbf{I}$ is equivalent to $[\mathbf{A}^T] = [\mathbf{A}] = [\mathbf{I}]$ or $[\mathbf{A}^T]_i^k [\mathbf{A}_j^i = c_{ki} a_{ij} = c_i^k a_j^i = \delta_j^k$. By Lemma IV.3.13, $c_{ki} = c_i^j = a_k^i = a_{ik}$ and so the orthogonality of **A** is equivalent to $c_{ki}a_{ij} = a_{ik}a_{ij} = a_k^i a_j^i = \delta_j^k$. This is equivalent to the orthonormality of the columns of $[\mathbf{A}]$, as claimed.

Lemma IV.3.16. A linear operator **A** on an inner product space is orthogonal if and only if with respect to an orthonormal basis it has a matrix whose columns (respectively, rows) regarded as column (respectively, row) vectors form an orthonormal set in the standard inner product on \mathbb{R}^n .

Proof. By Lemma IV.2.09, **A** is orthogonal if and only if $\mathbf{A}^T \mathbf{A} = \mathbf{I}$. Let $[\mathbf{A}^T] = [c_j^i] = c_{ij}$. Then $\mathbf{A}^T \mathbf{A} = \mathbf{I}$ is equivalent to $[\mathbf{A}^T] = [\mathbf{A}] = [\mathbf{I}]$ or $[\mathbf{A}^T]_i^k [\mathbf{A}_j^i = c_{ki} a_{ij} = c_i^k a_j^i = \delta_j^k$. By Lemma IV.3.13, $c_{ki} = c_i^j = a_k^i = a_{ik}$ and so the orthogonality of **A** is equivalent to $c_{ki}a_{ij} = a_{ik}a_{ij} = a_k^i a_j^i = \delta_j^k$. This is equivalent to the orthonormality of the columns of [**A**], as claimed.

By Corollary IV.2.10, **A** is orthogonal if and only if \mathbf{A}^T is orthogonal. As argued above, \mathbf{A}^T is orthogonal if and only if the columns of $[\mathbf{A}^T]$ are orthonormal. The columns of $[\mathbf{A}^T]$ are the rows of $[\mathbf{A}]$ by Lemma IV.3.13, so **A** is orthogonal if and only if the rows of $[\mathbf{A}]$ are orthonormal, as claimed.

Lemma IV.3.16. A linear operator **A** on an inner product space is orthogonal if and only if with respect to an orthonormal basis it has a matrix whose columns (respectively, rows) regarded as column (respectively, row) vectors form an orthonormal set in the standard inner product on \mathbb{R}^n .

Proof. By Lemma IV.2.09, **A** is orthogonal if and only if $\mathbf{A}^T \mathbf{A} = \mathbf{I}$. Let $[\mathbf{A}^T] = [c_j^i] = c_{ij}$. Then $\mathbf{A}^T \mathbf{A} = \mathbf{I}$ is equivalent to $[\mathbf{A}^T] = [\mathbf{A}] = [\mathbf{I}]$ or $[\mathbf{A}^T]_i^k [\mathbf{A}_j^i = c_{ki} a_{ij} = c_i^k a_j^i = \delta_j^k$. By Lemma IV.3.13, $c_{ki} = c_i^j = a_k^i = a_{ik}$ and so the orthogonality of **A** is equivalent to $c_{ki}a_{ij} = a_{ik}a_{ij} = a_k^i a_j^i = \delta_j^k$. This is equivalent to the orthonormality of the columns of [**A**], as claimed.

By Corollary IV.2.10, **A** is orthogonal if and only if \mathbf{A}^T is orthogonal. As argued above, \mathbf{A}^T is orthogonal if and only if the columns of $[\mathbf{A}^T]$ are orthonormal. The columns of $[\mathbf{A}^T]$ are the rows of $[\mathbf{A}]$ by Lemma IV.3.13, so **A** is orthogonal if and only if the rows of $[\mathbf{A}]$ are orthonormal, as claimed.