## Differential Geometry

## Chapter IV. Metric Vector Spaces

IV.3. Coordinates-Proofs of Theorems


## Table of contents

(1) Lemma IV. 3.04
(2) Lemma IV.3.06
(3) Theorem IV.3.05
(4) Theorem IV.3.08
(5) Corollary IV.3.10. Sylvester's Law of Inertia
(6) Lemma IV.3.11
(7) Lemma IV.3.13
(8) Lemma IV.3.14
(9) Lemma IV.3.16

## Lemma IV.3.04

Lemma IV.3.04. For $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ an orthonormal basis for metric vector space $(X, \mathbf{G})$ in $\beta$ coordinates we have $g_{i j}= \pm \delta_{i j}$.

Proof. By Note IV.3.A, we have $g_{i j}=\mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)$. Since $\beta$ is an orthonormal set, for $i \neq j$ we have $g_{i j}=\mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=0$. In a metric vector space, $\|\mathrm{x}\|=\sqrt{|\mathrm{G}(\mathrm{x}, \mathrm{x})|}$, so we must have $\left|\mathrm{G}\left(\mathrm{b}_{i}, \mathrm{~b}_{j}\right)\right|=1$ or $\mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)= \pm 1$. Hence $g_{i j}=\mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)= \pm \delta_{i j}$, as claimed.

## Lemma IV.3.04

Lemma IV.3.04. For $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ an orthonormal basis for metric vector space $(X, \mathbf{G})$ in $\beta$ coordinates we have $g_{i j}= \pm \delta_{i j}$.

Proof. By Note IV.3.A, we have $g_{i j}=\mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)$. Since $\beta$ is an orthonormal set, for $i \neq j$ we have $g_{i j}=\mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=0$. In a metric vector space, $\|\mathbf{x}\|=\sqrt{|\mathbf{G}(\mathbf{x}, \mathbf{x})|}$, so we must have $\left|\mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)\right|=1$ or $\mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)= \pm 1$. Hence $g_{i j}=\mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)= \pm \delta_{i j}$, as claimed.

## Lemma IV.3.06

Lemma IV.3.06. Nontrivial metric vector space $(X, \mathbf{G})$ possesses at least one non-null vector.

Proof. ASSUME not; i.e., assume $\mathbf{G}(\mathbf{x}, \mathbf{x})=\mathbf{x} \cdot \mathbf{x}=0$ for all $\mathbf{x} \in X$. Then $(\mathbf{y}+\mathbf{z}) \cdot(\mathbf{y}+\mathbf{z})=0$ for all $\mathbf{y}, \mathbf{z} \in X$ and so $\mathbf{y} \cdot \mathbf{y}+2 \mathbf{y} \cdot \mathbf{z}+\mathbf{z} \cdot \mathbf{z}=0$ and $y \cdot z=-1 / 2(y \cdot y+z \cdot z)=0$ for all $y, z \in X$. But then $G(y, z)=0$ for all $\mathbf{y}, \mathbf{z} \in X$ and $\mathbf{G}$ is not non-degenerate, a CONTRADICTION to the definition of metric vector space. So the assumption is false and hence there is some $x \in X$ such that $G(x, x)=x \cdot x=0$. That is, there is some non-null $\mathrm{x} \in X$, as claimed.

## Lemma IV.3.06

Lemma IV.3.06. Nontrivial metric vector space $(X, \mathbf{G})$ possesses at least one non-null vector.

Proof. ASSUME not; i.e., assume $\mathbf{G}(\mathbf{x}, \mathbf{x})=\mathbf{x} \cdot \mathbf{x}=0$ for all $\mathbf{x} \in X$. Then $(\mathbf{y}+\mathbf{z}) \cdot(\mathbf{y}+\mathbf{z})=0$ for all $\mathbf{y}, \mathbf{z} \in X$ and so $\mathbf{y} \cdot \mathbf{y}+2 \mathbf{y} \cdot \mathbf{z}+\mathbf{z} \cdot \mathbf{z}=0$ and $\mathbf{y} \cdot \mathbf{z}=-1 / 2(\mathbf{y} \cdot \mathbf{y}+\mathbf{z} \cdot \mathbf{z})=0$ for all $\mathbf{y}, \mathbf{z} \in X$. But then $\mathbf{G}(\mathbf{y}, \mathbf{z})=0$ for all $\mathbf{y}, \mathbf{z} \in X$ and $\mathbf{G}$ is not non-degenerate, a CONTRADICTION to the definition of metric vector space. So the assumption is false and hence there is some $\mathbf{x} \in X$ such that $\mathbf{G}(\mathbf{x}, \mathbf{x})=\mathbf{x} \cdot \mathbf{x}=0$. That is, there is some non-null $\mathrm{x} \in X$, as claimed.

## Theorem IV.3.05

Theorem IV.3.05. Every metric vector space $(X, \mathbf{G})$ possess at least one orthonormal basis.

Proof. By Lemma IV.3.06, there is non-null $x_{1} \in X$ such that $x_{1} \cdot x_{1} \neq 0$. Set $\mathbf{b}_{1}=\frac{\mathbf{x}_{1}}{\left\|\mathbf{x}_{1}\right\|_{\mathbf{G}}}$. Now suppose that inductively for $1 \leq k<n$ we have $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}$ an orthonormal set in $X$. Let $B_{k}=\operatorname{span}\left(\mathbf{B}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}\right)$. For $x \in B_{k}$, say $x=x^{i} \mathbf{b}_{i}$ where $i=1,2, \ldots, k$, if $G(x, y)=x \cdot y=0$ for all $\mathbf{y} \in B_{k}$ then, in particular, $x^{i}=\mathbf{x} \cdot \mathbf{b}_{i}=0$ for $i=1,2, \ldots, k$ and so $\mathbf{x}=\mathbf{0}$. That is, $\mathbf{G}$ is non-degenerate on $B_{k}$.

## Theorem IV.3.05

Theorem IV.3.05. Every metric vector space $(X, \mathbf{G})$ possess at least one orthonormal basis.
Proof. By Lemma IV.3.06, there is non-null $\mathbf{x}_{1} \in X$ such that $\mathbf{x}_{1} \cdot \mathbf{x}_{1} \neq 0$. Set $\mathbf{b}_{1}=\frac{\mathbf{x}_{1}}{\left\|\mathbf{x}_{1}\right\|_{\mathbf{G}}}$. Now suppose that inductively for $1 \leq k<n$ we have $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}$ an orthonormal set in $X$. Let $B_{k}=\operatorname{span}\left(\mathbf{B}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}\right)$. For $x \in B_{k}$, say $\mathbf{x}=x^{i} \mathbf{b}_{i}$ where $i=1,2, \ldots, k$, if $\mathbf{G}(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{y}=0$ for all $\mathbf{y} \in B_{k}$ then, in particular, $x^{i}=\mathbf{x} \cdot \mathbf{b}_{i}=0$ for $i=1,2, \ldots, k$ and so $\mathbf{x}=\mathbf{0}$. That is, $\mathbf{G}$ is non-degenerate on $B_{k}$. By Corollary IV.2.05 $\operatorname{dim}\left(B_{k}^{\perp}\right)=n-k \neq 0$ and by Corollary IV.2.06 G is non-degenerate on $B_{k}^{\perp}$. So by Lemma IV. 3.06 again, there is non-cull $\mathbf{x}_{k+1} \in B_{k}^{\perp}$. Set $\mathbf{b}_{k+1}=\frac{\mathbf{x}_{k+1}}{\left\|x_{k}\right\|}$. Then $\mathbf{b}_{k+1}$ is a unit vector orthogonal to $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}$ That is, $\left\{\mathbf{b}-1, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k+1}\right\}$ is an orthonormal set. So by Mathematical Induction, there is an orthonormal set $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ in $X$.

## Theorem IV.3.05

Theorem IV.3.05. Every metric vector space $(X, \mathbf{G})$ possess at least one orthonormal basis.

Proof. By Lemma IV.3.06, there is non-null $\mathbf{x}_{1} \in X$ such that $\mathbf{x}_{1} \cdot \mathbf{x}_{1} \neq 0$. Set $\mathbf{b}_{1}=\frac{\mathbf{x}_{1}}{\left\|\mathbf{x}_{1}\right\|_{\mathbf{G}}}$. Now suppose that inductively for $1 \leq k<n$ we have $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}$ an orthonormal set in $X$. Let $B_{k}=\operatorname{span}\left(\mathbf{B}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}\right)$. For $x \in B_{k}$, say $\mathbf{x}=x^{i} \mathbf{b}_{i}$ where $i=1,2, \ldots, k$, if $\mathbf{G}(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{y}=0$ for all $\mathbf{y} \in B_{k}$ then, in particular, $x^{i}=\mathbf{x} \cdot \mathbf{b}_{i}=0$ for $i=1,2, \ldots, k$ and so $\mathbf{x}=\mathbf{0}$. That is, $\mathbf{G}$ is non-degenerate on $B_{k}$. By Corollary IV.2.05 $\operatorname{dim}\left(B_{k}^{\perp}\right)=n-k \neq 0$ and by Corollary IV.2.06 G is non-degenerate on $B_{k}^{\perp}$. So by Lemma IV. 3.06 again, there is non-cull $\mathbf{x}_{k+1} \in B_{k}^{\perp}$. Set $\mathbf{b}_{k+1}=\frac{\mathbf{x}_{k+1}}{\left\|\mathbf{x}_{k+1}\right\|_{\mathbf{G}}}$. Then $\mathbf{b}_{k+1}$ is a unit vector orthogonal to $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}$. That is, $\left\{\mathbf{b}-1, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k+1}\right\}$ is an orthonormal set. So by Mathematical Induction, there is an orthonormal set $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ in $X$. By Exercise IV.3.2, $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ is linearly independent and, since $\operatorname{dim}(X)=n$, is

## Theorem IV.3.05

Theorem IV.3.05. Every metric vector space $(X, \mathbf{G})$ possess at least one orthonormal basis.

Proof. By Lemma IV.3.06, there is non-null $\mathbf{x}_{1} \in X$ such that $\mathbf{x}_{1} \cdot \mathbf{x}_{1} \neq 0$. Set $\mathbf{b}_{1}=\frac{\mathbf{x}_{1}}{\left\|\mathbf{x}_{1}\right\|_{\mathbf{G}}}$. Now suppose that inductively for $1 \leq k<n$ we have $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}$ an orthonormal set in $X$. Let $B_{k}=\operatorname{span}\left(\mathbf{B}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}\right)$. For $x \in B_{k}$, say $\mathbf{x}=x^{i} \mathbf{b}_{i}$ where $i=1,2, \ldots, k$, if $\mathbf{G}(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{y}=0$ for all $\mathbf{y} \in B_{k}$ then, in particular, $x^{i}=\mathbf{x} \cdot \mathbf{b}_{i}=0$ for $i=1,2, \ldots, k$ and so $\mathbf{x}=\mathbf{0}$. That is, $\mathbf{G}$ is non-degenerate on $B_{k}$. By Corollary IV.2.05 $\operatorname{dim}\left(B_{k}^{\perp}\right)=n-k \neq 0$ and by Corollary IV.2.06 G is non-degenerate on $B_{k}^{\perp}$. So by Lemma IV. 3.06 again, there is non-cull $\mathbf{x}_{k+1} \in B_{k}^{\perp}$. Set $\mathbf{b}_{k+1}=\frac{\mathbf{x}_{k+1}}{\left\|\mathbf{x}_{k+1}\right\|_{\mathbf{G}}}$. Then $\mathbf{b}_{k+1}$ is a unit vector orthogonal to $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}$. That is, $\left\{\mathbf{b}-1, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k+1}\right\}$ is an orthonormal set. So by Mathematical Induction, there is an orthonormal set $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ in $X$. By Exercise IV.3.2, $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ is linearly independent and, since $\operatorname{dim}(X)=n$, is an orthonormal basis.

## Theorem IV.3.08

Theorem IV.3.08. For any two orthonormal ordered bases
$\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ and $\beta^{*}=\left\{\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}, \ldots, \mathbf{b}_{n}^{\prime}\right\}$ for a metric vector space $(X, \mathbf{G})$ with

$$
\mathbf{b}_{i} \cdot \mathbf{b}_{j}=\left\{\begin{array}{l}
+1 \text { if } i \leq k \\
-1 \text { if } i>k
\end{array} \text { and } \mathbf{b}_{i}^{\prime} \cdot \mathbf{b}_{j}^{\prime}=\left\{\begin{array}{l}
+1 \text { if } i \leq \ell \\
-1 \text { if } i>\ell,
\end{array}\right.\right.
$$

we have $k=\ell$.
Proof. If $k=n$ then $\mathbf{G}$ is positive definite and so $\ell=n$. If $k=0$ then $\mathbf{G}$ is negative definite and so $\ell=0$. So, without loss of generality, we take $0<k<n$. Let $N=\operatorname{span}\left(\mathbf{b}_{k+1}, \mathbf{b}_{k+2}, \ldots, \mathbf{b}_{n}\right)$. Then $\mathbf{G}$ is negative definite since for $\mathbf{x}=x^{\prime} \mathbf{b}_{k+i} \in N$ we have

$$
\mathbf{G}(\mathbf{x}, \mathbf{x})=\mathbf{G}\left(x^{i} \mathbf{b}_{k+i}, x^{i} \mathbf{b}_{k+i}\right)=\sum_{i=1}^{n-k}-\left(x^{i}\right)^{2} .
$$

## Theorem IV.3.08

Theorem IV.3.08. For any two orthonormal ordered bases $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ and $\beta^{*}=\left\{\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}, \ldots, \mathbf{b}_{n}^{\prime}\right\}$ for a metric vector space $(X, \mathbf{G})$ with

$$
\mathbf{b}_{i} \cdot \mathbf{b}_{j}=\left\{\begin{array}{l}
+1 \text { if } i \leq k \\
-1 \text { if } i>k
\end{array} \text { and } \mathbf{b}_{i}^{\prime} \cdot \mathbf{b}_{j}^{\prime}=\left\{\begin{array}{l}
+1 \text { if } i \leq \ell \\
-1 \text { if } i>\ell
\end{array}\right.\right.
$$

we have $k=\ell$.
Proof. If $k=n$ then $\mathbf{G}$ is positive definite and so $\ell=n$. If $k=0$ then $\mathbf{G}$ is negative definite and so $\ell=0$. So, without loss of generality, we take $0<k<n$. Let $N=\operatorname{span}\left(\mathbf{b}_{k+1}, \mathbf{b}_{k+2}, \ldots, \mathbf{b}_{n}\right)$. Then $\mathbf{G}$ is negative definite since for $\mathbf{x}=x^{i} \mathbf{b}_{k+i} \in N$ we have

$$
\mathbf{G}(\mathbf{x}, \mathbf{x})=\mathbf{G}\left(x^{i} \mathbf{b}_{k+i}, x^{i} \mathbf{b}_{k+i}\right)=\sum_{i=1}^{n-k}-\left(x^{i}\right)^{2}
$$

## Theorem IV. 3.08 (continued 1)

Proof (continued). Let $W$ be a subspace of $X$ on which $\mathbf{G}$ is positive definite with basis $\omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{r}\right\}$. Consider the set $P=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{r}, \mathbf{b}_{k+1}, \mathbf{b}_{k+2}, \ldots, \mathbf{b}_{n}\right\}$. If
$a^{1} \omega_{1}+a^{2} \omega_{2}+\cdots+a^{r} \omega_{r}+a^{r+1} \mathbf{b}_{k+1}+a^{r+2} \mathbf{b}_{k+2}+\cdots+a^{r+(n-k)} \mathbf{b}_{n}=\mathbf{0}$.
Then with the Einstein summation convention this implies

$$
\begin{equation*}
a^{i} \omega_{i}=-a^{r+j} \mathbf{b}_{k+j} \tag{*}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left(a^{i} \omega_{i}\right) \cdot\left(a^{i} \omega_{i}\right)=\left(-a^{r+j} \mathbf{b}_{k+j}\right) \cdot\left(-a^{r+j} \mathbf{b}_{k+j}\right) \tag{**}
\end{equation*}
$$

But G (and so dot products) is nonnegative on W and nonpositive on N , so both sides of $(* *)$ must be zero (since $a^{i} \omega_{i} \in W$ and $-a^{r+j} \mathbf{b}_{k+j} \in N$ ). Therefore both sides of $(*)$ are $\mathbf{0}$ (since the positive/negative definiteness of G implies from the dot product in $(* *)$ that the constituent vectors in $(* *)$ must be $\mathbf{0}$ ). So $a^{i}=0$ for $i=1,2, \ldots, t+(n-k)$; that is, set $P$ is a linearly independent set.

## Theorem IV. 3.08 (continued 1)

Proof (continued). Let $W$ be a subspace of $X$ on which $\mathbf{G}$ is positive definite with basis $\omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{r}\right\}$. Consider the set $P=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{r}, \mathbf{b}_{k+1}, \mathbf{b}_{k+2}, \ldots, \mathbf{b}_{n}\right\}$. If
$a^{1} \omega_{1}+a^{2} \omega_{2}+\cdots+a^{r} \omega_{r}+a^{r+1} \mathbf{b}_{k+1}+a^{r+2} \mathbf{b}_{k+2}+\cdots+a^{r+(n-k)} \mathbf{b}_{n}=\mathbf{0}$.
Then with the Einstein summation convention this implies

$$
\begin{equation*}
a^{i} \omega_{i}=-a^{r+j} \mathbf{b}_{k+j} \tag{*}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left(a^{i} \omega_{i}\right) \cdot\left(a^{i} \omega_{i}\right)=\left(-a^{r+j} \mathbf{b}_{k+j}\right) \cdot\left(-a^{r+j} \mathbf{b}_{k+j}\right) \tag{**}
\end{equation*}
$$

But G (and so dot products) is nonnegative on $W$ and nonpositive on $N$, so both sides of $(* *)$ must be zero (since $a^{i} \omega_{i} \in W$ and $-a^{r+j} \mathbf{b}_{k+j} \in N$ ). Therefore both sides of $(*)$ are $\mathbf{0}$ (since the positive/negative definiteness of $\mathbf{G}$ implies from the dot product in $(* *)$ that the constituent vectors in $(* *)$ must be $\mathbf{0}$ ). So $a^{i}=0$ for $i=1,2, \ldots, t+(n-k)$; that is, set $P$ is a linearly independent set.

## Theorem IV.3.08 (continued 2)

Theorem IV.3.08. For any two orthonormal ordered bases $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ and $\beta^{*}=\left\{\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}, \ldots, \mathbf{b}_{n}^{\prime}\right\}$ for a metric vector space $(X, \mathbf{G})$ with

$$
\mathbf{b}_{i} \cdot \mathbf{b}_{j}=\left\{\begin{array}{l}
+1 \text { if } i \leq k \\
-1 \text { if } i>k
\end{array} \text { and } \mathbf{b}_{i}^{\prime} \cdot \mathbf{b}_{j}^{\prime}=\left\{\begin{array}{l}
+1 \text { if } i \leq \ell \\
-1 \text { if } i>\ell
\end{array}\right.\right.
$$

we have $k=\ell$.
Proof (continued). Since a linearly independent set of vectors in an $n$-dimensional vector space can have at most $n$ elements, then $r+(n-k) \leq n$ or $r \leq k$ or $\operatorname{dim}(W) \leq k$ where $W$ is an arbitrary subspace of $X$ on which $\mathbf{G}$ is positive definite. Since $\mathbf{G}$ is positive definite on $\operatorname{span}\left(\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}, \ldots, \mathbf{b}_{\ell}^{\prime}\right\}$ then we must have $\ell \leq k$. By a similar argument (interchanging the roles of $\beta$ and $\beta^{\prime}$ and hence interchanging the roles of $k$ and $\ell$ ) we have $k \leq \ell$ and therefore $k=\ell$, as claimed.

## Corollary IV.3.10. Sylvester's Law of Inertia

## Corollary IV.3.10. Sylvester's Law of Inertia.

Let $(X, \mathbf{G})$ be a metric vector space. For any symmetric bilinear form
$\mathbf{F}: X \times X \rightarrow \mathbb{R}$, there is a choice of basis for which $\mathbf{F}$ has the form

$$
\begin{gathered}
\mathbf{F}\left(x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}, x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}\right) \\
=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\cdots+\left(x^{n}\right)^{2}-\left(x^{k+1}\right)^{2}-\left(x^{k+2}\right)^{2}-\cdots-\left(x^{k+\ell}\right)^{2}
\end{gathered}
$$

where $k+\ell \leq n$. Unless $s$ or $\ell$ is zero, the subspace $V^{+}$spanned by the basic vectors with $\mathbf{F}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=+1$ depends on the choice of basis; so does the subspace $V^{-}$spanned by those with $\mathbf{F}\left(\mathbf{b}_{i}, \mathbf{b}_{i}\right)=-1$. However, $V^{0}$, spanned by those with $\mathbf{F}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=0$, depends only on $\mathbf{F}$, as do $k$ and $\ell$.
Proof. Set $V^{N}=\{\mathbf{x} \in X \mid \mathbf{F}(\mathbf{x}, \mathbf{y})=0$ for all $\mathbf{y} \in X\}$. By linearity in the first term of $\mathbf{F}$, we see that $V^{N}$ is closed under the vector sums and scalar multiplication and hence is a subspace of $X$. Let $\operatorname{dim}\left(V^{N}\right)=n-i$ and let $\left\{\mathbf{b}_{i+1}, \mathbf{b}_{i+2}, \ldots, \mathbf{b}_{n}\right\}$ be a basis of $V^{N}$. Extend this to a basis of $X$ of the form $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{i}, \mathbf{b}_{i+1}, \ldots, \mathbf{b}_{n}\right\}$ (which can be done by finding a basis for $\left(V^{N}\right)^{\perp}$ which is of dimension $i$ by Corollary IV.2.05)

## Corollary IV.3.10. Sylvester's Law of Inertia

## Corollary IV.3.10. Sylvester's Law of Inertia.

Let $(X, \mathbf{G})$ be a metric vector space. For any symmetric bilinear form
$\mathbf{F}: X \times X \rightarrow \mathbb{R}$, there is a choice of basis for which $\mathbf{F}$ has the form

$$
\begin{gathered}
\mathbf{F}\left(x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}, x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}\right) \\
=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\cdots+\left(x^{n}\right)^{2}-\left(x^{k+1}\right)^{2}-\left(x^{k+2}\right)^{2}-\cdots-\left(x^{k+\ell}\right)^{2}
\end{gathered}
$$

where $k+\ell \leq n$. Unless $s$ or $\ell$ is zero, the subspace $V^{+}$spanned by the basic vectors with $\mathbf{F}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=+1$ depends on the choice of basis; so does the subspace $V^{-}$spanned by those with $\mathbf{F}\left(\mathbf{b}_{i}, \mathbf{b}_{i}\right)=-1$. However, $V^{0}$, spanned by those with $\mathbf{F}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=0$, depends only on $\mathbf{F}$, as do $k$ and $\ell$.
Proof. Set $V^{N}=\{\mathbf{x} \in X \mid \mathbf{F}(\mathbf{x}, \mathbf{y})=0$ for all $\mathbf{y} \in X\}$. By linearity in the first term of $\mathbf{F}$, we see that $V^{N}$ is closed under the vector sums and scalar multiplication and hence is a subspace of $X$. Let $\operatorname{dim}\left(V^{N}\right)=n-i$ and let $\left\{\mathbf{b}_{i+1}, \mathbf{b}_{i+2}, \ldots, \mathbf{b}_{n}\right\}$ be a basis of $V^{N}$. Extend this to a basis of $X$ of the form $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{i}, \mathbf{b}_{i+1}, \ldots, \mathbf{b}_{n}\right\}$ (which can be done by finding a basis for $\left(V^{N}\right)^{\perp}$ which is of dimension $i$ by Corollary IV.2.05).

## Corollary IV.3.10 (continued 1)

Proof (continued). Denote by $W$ the subspace $\operatorname{span}\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{i}\right)$ of $X$. Let $\mathbf{w} \in W$. Then $\mathbf{F}(\mathbf{w}, \mathbf{v})=0$ for all $\mathbf{v} \in W$ implies

$$
\begin{gathered}
\mathbf{F}\left(\mathbf{w}, x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots, x^{i} \mathbf{b}_{i}\right)+x^{i+1} \mathbf{F}\left(\mathbf{w}, \mathbf{b}_{i+1}\right)+x^{i+2} \mathbf{F}\left(\mathbf{w}, \mathbf{b}_{i+2}\right)+\cdots \\
+x^{n} \mathbf{F}\left(\mathbf{w}, \mathbf{b}_{n}\right)=0
\end{gathered}
$$

for all $\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ since $x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{i} \mathbf{b}_{i} \in W$ and $\mathbf{b}_{i+1}, \mathbf{b}_{i+2}, \ldots, \mathbf{b}_{n} \in\left(V^{N}\right)^{\perp}$ and $W \subset\left(V^{n}\right)^{\perp}$. So by the bilinearity of $\mathbf{F}$ we have $\mathbf{F}\left(\mathbf{w}, x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}\right)=0$ for all $\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ implies $\mathbf{F}(\mathbf{w}, \mathbf{x})=0$ for all $\mathbf{x} \in X$, which implies $\mathbf{w} \in V^{N}$ by the definition of $V^{N}$. But $\mathbf{w} \in W \subset\left(V^{N}\right)^{\perp}$. Since $\mathbf{w} \in V^{N}$ then $\mathbf{w} \in \operatorname{span}\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{i}\right)$. hence $\mathbf{w}=\mathbf{0}$. So the restricted symmetric bilinear form $\left.\mathbf{F}\right|_{W \times W}$ is non-degenerate. So $(W, \mathbf{F})$ is a metric vector space and by Theorem IV.3.05 there is an orthonormal basis for W Replace basis $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{i}\right\}$ of $W$ with this orthonormal basis of $W$ (which we also denote as $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{i}\right\}$ ).

## Corollary IV.3.10 (continued 1)

Proof (continued). Denote by $W$ the subspace $\operatorname{span}\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{i}\right)$ of $X$. Let $\mathbf{w} \in W$. Then $\mathbf{F}(\mathbf{w}, \mathbf{v})=0$ for all $\mathbf{v} \in W$ implies

$$
\begin{gathered}
\mathbf{F}\left(\mathbf{w}, x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots, x^{i} \mathbf{b}_{i}\right)+x^{i+1} \mathbf{F}\left(\mathbf{w}, \mathbf{b}_{i+1}\right)+x^{i+2} \mathbf{F}\left(\mathbf{w}, \mathbf{b}_{i+2}\right)+\cdots \\
+x^{n} \mathbf{F}\left(\mathbf{w}, \mathbf{b}_{n}\right)=0
\end{gathered}
$$

for all $\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ since $x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{i} \mathbf{b}_{i} \in W$ and $\mathbf{b}_{i+1}, \mathbf{b}_{i+2}, \ldots, \mathbf{b}_{n} \in\left(V^{N}\right)^{\perp}$ and $W \subset\left(V^{n}\right)^{\perp}$. So by the bilinearity of $\mathbf{F}$ we have $\mathbf{F}\left(\mathbf{w}, x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}\right)=0$ for all $\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ implies $\mathbf{F}(\mathbf{w}, \mathbf{x})=0$ for all $\mathbf{x} \in X$, which implies $\mathbf{w} \in V^{N}$ by the definition of $V^{N}$. But $\mathbf{w} \in W \subset\left(V^{N}\right)^{\perp}$. Since $\mathbf{w} \in V^{N}$ then
$\mathbf{w} \in \operatorname{span}\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{i}\right)$. hence $\mathbf{w}=\mathbf{0}$. So the restricted symmetric bilinear form $\left.\mathbf{F}\right|_{W \times W}$ is non-degenerate. So $(W, \mathbf{F})$ is a metric vector space and by Theorem IV.3.05 there is an orthonormal basis for $W$. Replace basis $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{i}\right\}$ of $W$ with this orthonormal basis of $W$ (which we also denote as $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{i}\right\}$ ).

## Corollary IV.3.10 (continued 2)

Proof (continued). Then $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{i}, \mathbf{b}_{i+1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis of $X$ for which $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{i}\right\}$ is an orthonormal set and $\mathbf{F}\left(\mathbf{b}_{p}, \mathbf{b}_{q}\right)=0$ whenever $1 \leq p \leq i$ and $i+1 \leq q \leq n$ by the definition of $V^{N}$. By Theorem IV.3.08, there is $0 \leq k \leq i$ such that $\mathbf{b}_{j} \cdot \mathbf{b}_{j}=\left\{\begin{array}{l}+1 \text { if } j \leq k \\ -1 \text { if } k<j \leq i \text {. }\end{array}\right.$ by the bilinearity of $F$,

$$
\begin{gathered}
\mathbf{F}\left(x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}, x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}\right) \\
=\mathbf{F}\left(x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}, x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{i}\right) \\
+\mathbf{F}\left(x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}, x^{i+1} \mathbf{b}_{i+1}+x^{i+2} \mathbf{b}_{i+2}+\cdots+x^{n} \mathbf{b}_{n}\right) \\
=\mathbf{F}\left(x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{i} \mathbf{b}_{i}, x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{i} \mathbf{b}_{i}\right) \\
+\mathbf{F}\left(x^{i+1} \mathbf{b}_{i+1}+x^{i+2} \mathbf{b}_{i+2}+\cdots+x^{n} \mathbf{b}_{n}, x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{i} \mathbf{b}_{i}\right)+0 \\
=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\cdots+\left(x^{k}\right)^{2}-\left(x^{k+1}\right)^{2}-\left(x^{k+2}\right)^{2}-\cdots-\left(x^{k+\ell}\right)^{2}
\end{gathered}
$$

by the orthonormality of $\left\{x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{i} \mathbf{b}_{i}\right\}$, where $K+\ell=i$. So the basis exists, as claimed.

## Corollary IV.3.10 (continued 2)

Proof (continued). Then $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{i}, \mathbf{b}_{i+1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis of $X$ for which $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{i}\right\}$ is an orthonormal set and $\mathbf{F}\left(\mathbf{b}_{p}, \mathbf{b}_{q}\right)=0$ whenever $1 \leq p \leq i$ and $i+1 \leq q \leq n$ by the definition of $V^{N}$. By Theorem IV.3.08, there is $0 \leq k \leq i$ such that $\mathbf{b}_{j} \cdot \mathbf{b}_{j}=\left\{\begin{array}{l}+1 \text { if } j \leq k \\ -1 \text { if } k<j \leq i \text {. }\end{array}\right.$ by the bilinearity of $\mathbf{F}$,

$$
\begin{gathered}
\mathbf{F}\left(x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}, x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}\right) \\
=\mathbf{F}\left(x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}, x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{i}\right) \\
+\mathbf{F}\left(x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}, x^{i+1} \mathbf{b}_{i+1}+x^{i+2} \mathbf{b}_{i+2}+\cdots+x^{n} \mathbf{b}_{n}\right) \\
=\mathbf{F}\left(x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{i} \mathbf{b}_{i}, x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{i} \mathbf{b}_{i}\right) \\
+\mathbf{F}\left(x^{i+1} \mathbf{b}_{i+1}+x^{i+2} \mathbf{b}_{i+2}+\cdots+x^{n} \mathbf{b}_{n}, x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{i} \mathbf{b}_{i}\right)+0 \\
=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\cdots+\left(x^{k}\right)^{2}-\left(x^{k+1}\right)^{2}-\left(x^{k+2}\right)^{2}-\cdots-\left(x^{k+\ell}\right)^{2}
\end{gathered}
$$

by the orthonormality of $\left\{x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{i} \mathbf{b}_{i}\right\}$, where $K+\ell=i$. So the basis exists, as claimed.

## Corollary IV.3.10 (continued 3)

Proof (continued). Now if $k$ or $\ell$ is zero then $\mathbf{F}$ is, respectively, negative definite and positive definite, regardless of the basis used for ( $W, \mathbf{F}$ ). When $k \neq 0 \neq \ell$, by Theorem IV.3.08, the choice of $k$ (and hence the choice of $\ell$ ) is independent of the basis of ( $W, \mathbf{F}$ ). So for $k \neq 0 \neq \ell$, the dimensions of $V^{+}$and $V^{-}$are determined by $\mathbf{F}$, but the spaces themselves depend on the choice of the basis since $V^{+}=\operatorname{span}\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right)$ and $V^{-}=\operatorname{span}\left(\mathbf{b}_{k+1}, \mathbf{b}_{k+2}, \ldots, \mathbf{b}_{k+\ell}\right)$. Space
$V^{0}=V^{N}=\{\mathbf{x} \in X \mid \mathbf{F}(\mathbf{x}, \mathbf{y})=0$ for all $\mathbf{y} \in X\}$ depends only on $\mathbf{F}$, as claimed.

## Lemma IV.3.11

Lemma IV.3.11. Let $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for $(X, \mathbf{G})$. Then the dual basis to $\beta, \beta^{*}=\left\{\mathbf{b}^{1}, \mathbf{b}^{2}, \ldots, \mathbf{b}^{n}\right\}$, is an orthonormal basis in the dual metric $\mathbf{G}^{*}$ on $X^{*}$ if and only if $\beta$ is an orthonormal basis for $X$.

Proof. Basis $\beta$ of $X$ is orthonormal if and only if $\mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{i}\right)=\mathbf{b}_{i} \cdot \mathbf{b}_{j}= \pm \delta_{i j}$, which is equivalent to

(provided we employ the convention of listing the -1 's "first"). Now $\left[g_{i j}\right]=M$ if and only if the inverse $\left[g_{i j}\right]^{-1}=\left[g^{i j}\right]=M$. Then by Note IV.3.C, $\mathbf{G}^{*}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=g^{\prime \prime}$ so that $\left[g^{\prime \prime}\right]=M$ if and only if $\beta^{*}$ is

## Lemma IV.3.11

Lemma IV.3.11. Let $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for $(X, \mathbf{G})$. Then the dual basis to $\beta, \beta^{*}=\left\{\mathbf{b}^{1}, \mathbf{b}^{2}, \ldots, \mathbf{b}^{n}\right\}$, is an orthonormal basis in the dual metric $\mathbf{G}^{*}$ on $X^{*}$ if and only if $\beta$ is an orthonormal basis for $X$.

Proof. Basis $\beta$ of $X$ is orthonormal if and only if $\mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{i}\right)=\mathbf{b}_{i} \cdot \mathbf{b}_{j}= \pm \delta_{i j}$, which is equivalent to

$$
\left[g_{i j}\right]=\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & -1 & 0 \\
0 & 0 & \cdots & 0 & -1
\end{array}\right]=M
$$

(provided we employ the convention of listing the -1 's "first"). Now $\left[g_{i j}\right]=M$ if and only if the inverse $\left[g_{i j}\right]^{-1}=\left[g^{i j}\right]=M$. Then by Note IV.3.C, $\mathbf{G}^{*}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=g^{i j}$ so that $\left[g^{i j}\right]=M$ if and only if $\beta^{*}$ is orthonormal.

## Lemma IV.3.13

Lemma IV.3.13. If $A$ is a linear operator on an inner product space $(X, \mathbf{G})$, then $\left[\mathbf{A}^{T}\right]_{\beta}^{\beta}=\left([\mathbf{A}]_{\beta}^{\beta}\right)^{t}$ with respect to any orthonormal basis $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$.

Proof. First, by definition, $\mathbf{G}_{\downarrow} \mathbf{b}_{i}=\mathbf{G}_{\downarrow}\left(\mathbf{b}_{i}\right)=\mathbf{x}^{*}$ where $\mathbf{x}^{*}(\mathbf{y})=\mathbf{G}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{y} \in X$. So

$$
\left(\mathbf{G}_{\downarrow} \mathbf{b}_{i}\right)\left(\mathbf{b}_{j}\right)=\mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=\mathbf{b}_{i} \cdot \mathbf{b}_{j}=\delta_{i j}
$$

for all $\mathbf{b}_{j} \in \beta$. Also for $\mathbf{b}^{i} \in \beta^{*}$ we have $\mathbf{b}^{i}\left(\mathbf{b}_{j}\right)=\mathbf{b}^{i} \mathbf{b}_{j}=\delta_{i j}$ for all $\mathbf{b}_{j} \in \beta$. So $\mathbf{G}_{\downarrow}\left(\mathbf{b}_{i}\right)=\mathbf{b}^{i}$ (since these elements of $X^{*}$ are equal on basis $\beta$ ).

## Lemma IV.3.13

Lemma IV.3.13. If $A$ is a linear operator on an inner product space $(X, \mathbf{G})$, then $\left[\mathbf{A}^{T}\right]_{\beta}^{\beta}=\left([\mathbf{A}]_{\beta}^{\beta}\right)^{t}$ with respect to any orthonormal basis $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$.

Proof. First, by definition, $\mathbf{G}_{\downarrow} \mathbf{b}_{i}=\mathbf{G}_{\downarrow}\left(\mathbf{b}_{i}\right)=\mathbf{x}^{*}$ where $\mathbf{x}^{*}(\mathbf{y})=\mathbf{G}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{y} \in X$. So

$$
\left(\mathbf{G}_{\downarrow} \mathbf{b}_{i}\right)\left(\mathbf{b}_{j}\right)=\mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=\mathbf{b}_{i} \cdot \mathbf{b}_{j}=\delta_{i j}
$$

for all $\mathbf{b}_{j} \in \beta$. Also for $\mathbf{b}^{i} \in \beta^{*}$ we have $\mathbf{b}^{i}\left(\mathbf{b}_{j}\right)=\mathbf{b}^{i} \mathbf{b}_{j}=\delta_{i j}$ for all $\mathbf{b}_{j} \in \beta$. So $\mathbf{G}_{\downarrow}\left(\mathbf{b}_{i}\right)=\mathbf{b}^{i}$ (since these elements of $X^{*}$ are equal on basis $\beta$ ).

## Lemma IV.3.13 (continued)

Lemma IV.3.13. If $A$ is a linear operator on an inner product space $(X, \mathbf{G})$, then $\left[\mathbf{A}^{T}\right]_{\beta}^{\beta}=\left([\mathbf{A}]_{\beta}^{\beta}\right)^{t}$ with respect to any orthonormal basis $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$.

Proof (continued). Hence $\left[\mathbf{G}_{\downarrow}\right]_{\beta}^{\beta^{*}}$ is the identity matrix, and so is its inverse $\left[\mathbf{G}_{\uparrow}\right]_{\beta^{*}}^{\beta}$ (see Note IV.3.B). So

$$
\begin{aligned}
{\left[\mathbf{A}^{T}\right]_{\beta}^{\beta} } & =\left[\mathbf{G}_{\uparrow} A^{*} \mathbf{G}_{\downarrow}\right]_{\beta}^{\beta} \text { by definition of } \mathbf{A}^{T} \\
& =\left[\mathbf{G}_{\uparrow}\right]_{\beta^{*}}^{\beta}\left[\mathbf{A}^{*}\right]_{\beta^{*}}^{\beta^{*}}\left[\mathbf{G}_{\downarrow}\right]_{\beta}^{\beta^{*}} \\
& =\left[\mathbf{A}^{*}\right]_{\beta^{*}}^{\beta^{*}} \text { since }\left[\mathbf{G}_{\uparrow}\right]_{\beta^{*}}^{\beta^{*}}=\left[\mathbf{G}_{\downarrow}\right]_{\beta}^{\beta^{*}}=\mathcal{I} \\
& =\left([\mathbf{A}]_{\beta}^{\beta}\right)^{t} \text { by Theorem III.1.A. }
\end{aligned}
$$

## Lemma IV.3.14

Lemma IV.3.14. If $\mathbf{A}$ is a linear operator on a metric vector space $(X, \mathbf{G})$ then with respect to orthonormal basis $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ we have

$$
\left[\mathbf{A}^{T}\right]_{j}^{i}=\left(\frac{g_{j j}}{g_{i i}}\right)[\mathbf{A}]_{i}^{j}=\left(\frac{g_{j j}}{g_{i i}}\right)\left[[\mathbf{A}]^{t}\right]_{j}^{i}
$$

for $1 \leq i, j \leq n$, where $[\mathbf{A}]_{j}^{j}=a_{i j}=a_{j}^{i}$ is the entry in the $i$ th row and $j$ th column of $[\mathbf{A}]_{\beta}^{\beta}$ and there is no summation over $i$ and $j$ (though the Einstein convention implies it on the right hand side of the above equation).

Proof. First $\mathbf{A b}_{j}$ has coordinate vector with respect to $\beta$ of

$$
\left[\begin{array}{lllllllll}
a_{i j}
\end{array}\right]\left[\begin{array}{lllllll}
0 & 0 & \cdots & 0 & 1 & 0 & \cdots
\end{array}\right]^{t}=\left[\begin{array}{llll}
a_{1 j} & a_{2 j} & \cdots & a_{n j}
\end{array}\right]^{t}
$$

so that $\mathbf{A} \mathbf{b}_{j}=a_{k j} \mathbf{b}_{k}$. So we have
$\left(\mathbf{A} \mathbf{b}_{j}\right) \cdot \mathbf{b}_{\ell}=\left(a_{k j} \mathbf{b}_{k}\right) \cdot \mathbf{b}_{\ell}=a_{k j}\left(\mathbf{b}_{k} \cdot \mathbf{b}_{\ell}\right)=a_{\ell j} \mathbf{b}_{\ell} \cdot \mathbf{b}_{\ell}=[\mathbf{A}]_{j}^{\ell}\left(\mathbf{b}_{\ell} \cdot \mathbf{b}_{\ell}\right)$.

## Lemma IV.3.14

Lemma IV.3.14. If $\mathbf{A}$ is a linear operator on a metric vector space $(X, \mathbf{G})$ then with respect to orthonormal basis $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ we have

$$
\left[\mathbf{A}^{T}\right]_{j}^{i}=\left(\frac{g_{j j}}{g_{i i}}\right)[\mathbf{A}]_{i}^{j}=\left(\frac{g_{j j}}{g_{i i}}\right)\left[[\mathbf{A}]^{t}\right]_{j}^{i}
$$

for $1 \leq i, j \leq n$, where $[\mathbf{A}]_{j}^{i}=a_{i j}=a_{j}^{i}$ is the entry in the $i$ th row and $j$ th column of $[\mathbf{A}]_{\beta}^{\beta}$ and there is no summation over $i$ and $j$ (though the Einstein convention implies it on the right hand side of the above equation).

Proof. First $\mathbf{A b}_{j}$ has coordinate vector with respect to $\beta$ of

$$
\left[\begin{array}{llllllll}
a_{i j}
\end{array}\right]\left[\begin{array}{llllll}
0 & 0 & \cdots & 0 & 1 & 0 \\
j
\end{array}\right.
$$

so that $\mathbf{A} \mathbf{b}_{j}=a_{k j} \mathbf{b}_{k}$. So we have
$\left(\mathbf{A} \mathbf{b}_{j}\right) \cdot \mathbf{b}_{\ell}=\left(a_{k j} \mathbf{b}_{k}\right) \cdot \mathbf{b}_{\ell}=a_{k j}\left(\mathbf{b}_{k} \cdot \mathbf{b}_{\ell}\right)=a_{\ell j} \mathbf{b}_{\ell} \cdot \mathbf{b}_{\ell}=[\mathbf{A}]_{j}^{\ell}\left(\mathbf{b}_{\ell} \cdot \mathbf{b}_{\ell}\right)$.

## Lemma IV.3.14 (continued 1)

Proof (continued). Let $\left[\mathbf{A}^{T}\right]_{\beta}^{\beta}=\left[\mathbf{A}^{T}\right]=\left[c_{i j}\right]$. Then $\mathbf{A}^{T} \mathbf{b}_{\ell}=c_{k \ell} \mathbf{b}_{\ell}$. So

$$
\left(\mathbf{A}^{T} \mathbf{b}_{\ell}\right) \cdot \mathbf{b}_{i}=\left(c_{k \ell} \mathbf{b}_{k}\right) \cdot \mathbf{b}_{i}=c_{k \ell}\left(\mathbf{b}_{k} \cdot \mathbf{b}_{i}\right)=c_{i \ell} \mathbf{b}_{i} \cdot \mathbf{b}_{i}=\left[\mathbf{A}^{T}\right]_{\ell}^{i}\left(\mathbf{b}_{i} \cdot \mathbf{b}_{i}\right),
$$

$$
\text { or }\left[\mathbf{A}^{T}\right]_{\ell}^{i}=\frac{\left(\mathbf{A}^{T} \mathbf{b}_{\ell}\right) \cdot \mathbf{b}_{i}}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}} \text {. Hence }
$$

$$
\left[\mathbf{A}^{T}\right]_{\ell}^{i}=\frac{\left(\mathbf{A}^{T} \mathbf{b}_{\ell}\right) \cdot \mathbf{b}_{i}}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}}
$$

$=\frac{\left(\mathbf{G}_{\uparrow} \mathbf{A}^{*} \mathbf{G}_{\downarrow} \mathbf{b}_{\ell}\right) \cdot \mathbf{b}_{i}}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}}$ by the definition of $\mathbf{A}^{T}$
$=\frac{\mathbf{G}\left(\mathbf{G}_{\uparrow} \mathbf{A}^{*} \mathbf{G}_{\downarrow} \mathbf{b}_{\ell}, \mathbf{b}_{i}\right)}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}}$ since $\mathbf{G}$ determines dot products in (X,G)
$=\frac{\left(\mathbf{A}^{*} \mathbf{G}_{\downarrow} \mathbf{b}_{\ell}\right)\left(\mathbf{b}_{i}\right)}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}}$ since $\mathrm{G}_{\uparrow}\left(\mathrm{x}^{*}\right)=\mathrm{x}$ where $\mathrm{x}^{*}(\mathrm{y})=\mathrm{G}(\mathrm{x}, \mathrm{y})=\mathrm{x} \cdot \mathrm{y}$ for all $\mathbf{y} \in X$; see Theorem IV.1.09 and Note IV.1.A (here, $\mathbf{x}^{*}=\mathbf{A}^{*} \mathbf{G}_{\downarrow} \mathbf{b}_{\ell}$ and we take $\mathbf{y}=\mathbf{b}_{i}$ )

## Lemma IV.3.14 (continued 1)

Proof (continued). Let $\left[\mathbf{A}^{T}\right]_{\beta}^{\beta}=\left[\mathbf{A}^{T}\right]=\left[c_{i j}\right]$. Then $\mathbf{A}^{T} \mathbf{b}_{\ell}=c_{k \ell} \mathbf{b}_{\ell}$. So

$$
\left(\mathbf{A}^{T} \mathbf{b}_{\ell}\right) \cdot \mathbf{b}_{i}=\left(c_{k \ell} \mathbf{b}_{k}\right) \cdot \mathbf{b}_{i}=c_{k \ell}\left(\mathbf{b}_{k} \cdot \mathbf{b}_{i}\right)=c_{i \ell} \mathbf{b}_{i} \cdot \mathbf{b}_{i}=\left[\mathbf{A}^{T}\right]_{\ell}^{i}\left(\mathbf{b}_{i} \cdot \mathbf{b}_{i}\right),
$$

or $\left[\mathbf{A}^{T}\right]_{\ell}^{i}=\frac{\left(\mathbf{A}^{T} \mathbf{b}_{\ell}\right) \cdot \mathbf{b}_{i}}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}}$. Hence
$\left[\mathbf{A}^{T}\right]_{\ell}^{i}=\frac{\left(\mathbf{A}^{T} \mathbf{b}_{\ell}\right) \cdot \mathbf{b}_{i}}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}}$
$=\frac{\left(\mathbf{G}_{\uparrow} \mathbf{A}^{*} \mathbf{G}_{\downarrow} \mathbf{b}_{\ell}\right) \cdot \mathbf{b}_{i}}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}}$ by the definition of $\mathbf{A}^{T}$
$=\frac{\mathbf{G}\left(\mathbf{G}_{\uparrow} \mathbf{A}^{*} \mathbf{G}_{\downarrow} \mathbf{b}_{\ell}, \mathbf{b}_{i}\right)}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}}$ since $\mathbf{G}$ determines dot products in $(X, \mathbf{G})$
$=\frac{\left(\mathbf{A}^{*} \mathbf{G}_{\downarrow} \mathbf{b}_{\ell}\right)\left(\mathbf{b}_{i}\right)}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}}$ since $\mathbf{G}_{\uparrow}\left(\mathbf{x}^{*}\right)=\mathbf{x}$ where $\mathbf{x}^{*}(\mathbf{y})=\mathbf{G}(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$
for all $\mathbf{y} \in X$; see Theorem IV.1.09 and Note IV.1.A (here, $\mathbf{x}^{*}=\mathbf{A}^{*} \mathbf{G}_{\downarrow} \mathbf{b}_{\ell}$ and we take $\mathbf{y}=\mathbf{b}_{i}$ )

## Lemma IV.3.14 (continued 2)

## Proof (continued).

$$
\begin{aligned}
{\left[\mathbf{A}^{T}\right]_{\ell}^{i}=} & \frac{\left(\mathbf{A}^{*} \mathbf{G}_{\downarrow} \mathbf{b}_{\ell}\right)\left(\mathbf{b}_{i}\right)}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}} \\
= & \frac{\left(\mathbf{g}_{\downarrow} \mathbf{b}_{\ell} \mathbf{A}\right)\left(\mathbf{b}_{i}\right)}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}} \text { since } \mathbf{A}^{*}(\mathbf{f})=\mathbf{f} \circ \mathbf{A} \text { by the definition of dual map } \\
= & \frac{\left(\mathbf{G}_{\downarrow} \mathbf{b}_{\ell}\right)\left(\mathbf{A} \mathbf{b}_{\ell}\right)}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}} \text { since function composition is associative } \\
= & \frac{\mathbf{b}_{\ell} \cdot\left(\mathbf{A} \mathbf{b}_{i}\right)}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}} \text { since } \mathbf{G}_{\downarrow}(\mathbf{x})=\mathbf{x}^{*} \text { where } \mathbf{x}^{*}(\mathbf{y})=\mathbf{G}(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{y} \\
& \text { for all } \mathbf{y} \in X ; \text { see Theorem IV.1.09 } \\
= & \frac{[\mathbf{A}]_{i}^{\ell} \mathbf{b}_{\ell} \cdot \mathbf{b}_{\ell}}{\mathbf{b}_{i} \cdot \mathbf{b}_{i}} \text { by }(*) \\
= & {[\mathbf{A}]_{i}^{\ell} \frac{g_{\ell \ell}}{g_{i i}}, }
\end{aligned}
$$

## Lemma IV.3.16

Lemma IV.3.16. A linear operator $\mathbf{A}$ on an inner product space is orthogonal if and only if with respect to an orthonormal basis it has a matrix whose columns (respectively, rows) regarded as column (respectively, row) vectors form an orthonormal set in the standard inner product on $\mathbb{R}^{n}$.

Proof. By Lemma IV.2.09, $\mathbf{A}$ is orthogonal if and only if $\mathbf{A}^{\top} \mathbf{A}=\mathbf{I}$. Let $\left[\mathbf{A}^{T}\right]=\left[c_{j}^{i}\right]=c_{i j}$. Then $\mathbf{A}^{T} \mathbf{A}=\mathbf{I}$ is equivalent to $\left[\mathbf{A}^{T}\right]=[\mathbf{A}]=[\mathbf{I}]$ or $\left[\mathbf{A}^{T}\right]_{i}^{k}\left[\mathbf{A}_{j}^{i}=c_{k i} a_{i j}=c_{i}^{k} a_{j}^{i}=\delta_{j}^{k}\right.$. By Lemma IV.3.13, $c_{k i}=c_{i}^{j}=a_{k}^{i}=a_{i k}$ and so the orthogonality of $\mathbf{A}$ is equivalent to $c_{k i} a_{i j}=a_{i k} a_{i j}=a_{k}^{i} a_{j}^{i}=\delta_{j}^{k}$ This is equivalent to the orthonormality of the columns of $[\mathbf{A}]$, as claimed.

## Lemma IV.3.16

Lemma IV.3.16. A linear operator $\mathbf{A}$ on an inner product space is orthogonal if and only if with respect to an orthonormal basis it has a matrix whose columns (respectively, rows) regarded as column (respectively, row) vectors form an orthonormal set in the standard inner product on $\mathbb{R}^{n}$.

Proof. By Lemma IV.2.09, $\mathbf{A}$ is orthogonal if and only if $\mathbf{A}^{T} \mathbf{A}=\mathbf{I}$. Let $\left[\mathbf{A}^{T}\right]=\left[c_{j}^{i}\right]=c_{i j}$. Then $\mathbf{A}^{T} \mathbf{A}=\mathbf{I}$ is equivalent to $\left[\mathbf{A}^{T}\right]=[\mathbf{A}]=[\mathbf{I}]$ or $\left[\mathbf{A}^{T}\right]_{i}^{k}\left[\mathbf{A}_{j}^{i}=c_{k i} a_{i j}=c_{i}^{k} a_{j}^{i}=\delta_{j}^{k}\right.$. By Lemma IV.3.13, $c_{k i}=c_{i}^{j}=a_{k}^{i}=a_{i k}$ and so the orthogonality of $\mathbf{A}$ is equivalent to $c_{k i} a_{i j}=a_{i k} a_{i j}=a_{k}^{i} a_{j}^{i}=\delta_{j}^{k}$. This is equivalent to the orthonormality of the columns of $[\mathbf{A}]$, as claimed.

By Corollary IV.2.10, $\mathbf{A}$ is orthogonal if and only if $\mathbf{A}^{\top}$ is orthogonal. As argued above, $\mathbf{A}^{T}$ is orthogonal if and only if the columns of $\left[\mathbf{A}^{T}\right]$ are orthonormal. The columns of $\left[\mathbf{A}^{T}\right]$ are the rows of $[\mathbf{A}]$ by Lemma IV.3.13, so $\mathbf{A}$ is orthogonal if and only if the rows of $[\mathbf{A}]$ are orthonormal, as claimed.

## Lemma IV.3.16

Lemma IV.3.16. A linear operator $\mathbf{A}$ on an inner product space is orthogonal if and only if with respect to an orthonormal basis it has a matrix whose columns (respectively, rows) regarded as column (respectively, row) vectors form an orthonormal set in the standard inner product on $\mathbb{R}^{n}$.

Proof. By Lemma IV.2.09, $\mathbf{A}$ is orthogonal if and only if $\mathbf{A}^{T} \mathbf{A}=\mathbf{I}$. Let $\left[\mathbf{A}^{T}\right]=\left[c_{j}^{i}\right]=c_{i j}$. Then $\mathbf{A}^{T} \mathbf{A}=\mathbf{I}$ is equivalent to $\left[\mathbf{A}^{T}\right]=[\mathbf{A}]=[\mathbf{I}]$ or $\left[\mathbf{A}^{T}\right]_{i}^{k}\left[\mathbf{A}_{j}^{i}=c_{k i} a_{i j}=c_{i}^{k} a_{j}^{i}=\delta_{j}^{k}\right.$. By Lemma IV.3.13, $c_{k i}=c_{i}^{j}=a_{k}^{i}=a_{i k}$ and so the orthogonality of $\mathbf{A}$ is equivalent to $c_{k i} a_{i j}=a_{i k} a_{i j}=a_{k}^{i} a_{j}^{i}=\delta_{j}^{k}$. This is equivalent to the orthonormality of the columns of $[\mathbf{A}]$, as claimed.

By Corollary IV.2.10, $\mathbf{A}$ is orthogonal if and only if $\mathbf{A}^{T}$ is orthogonal. As argued above, $\mathbf{A}^{T}$ is orthogonal if and only if the columns of $\left[\mathbf{A}^{T}\right]$ are orthonormal. The columns of $\left[\mathbf{A}^{T}\right]$ are the rows of $[\mathbf{A}]$ by Lemma IV.3.13, so $\mathbf{A}$ is orthogonal if and only if the rows of $[\mathbf{A}]$ are orthonormal, as claimed.

