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Lemma IV.3.04

Lemma IV.3.04

Lemma IV.3.04. For β = {b1,b2, . . . ,bn} an orthonormal basis for
metric vector space (X ,G) in β coordinates we have gij = ±δij .

Proof. By Note IV.3.A, we have gij = G(bi ,bj). Since β is an
orthonormal set, for i 6= j we have gij = G(bi ,bj) = 0. In a metric vector
space, ‖x‖ =

√
|G(x, x)|, so we must have |G(bi ,bj)| = 1 or

G(bi ,bj) = ±1. Hence gij = G(bi ,bj) = ±δij , as claimed.
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Lemma IV.3.06

Lemma IV.3.06

Lemma IV.3.06. Nontrivial metric vector space (X ,G) possesses at least
one non-null vector.

Proof. ASSUME not; i.e., assume G(x, x) = x · x = 0 for all x ∈ X . Then
(y + z) · (y + z) = 0 for all y, z ∈ X and so y · y + 2y · z + z · z = 0 and
y · z = −1/2(y · y + z · z) = 0 for all y, z ∈ X . But then G(y, z) = 0 for all
y, z ∈ X and G is not non-degenerate, a CONTRADICTION to the
definition of metric vector space. So the assumption is false and hence
there is some x ∈ X such that G(x, x) = x · x = 0. That is, there is some
non-null x ∈ X , as claimed.
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Theorem IV.3.05

Theorem IV.3.05

Theorem IV.3.05. Every metric vector space (X ,G) possess at least one
orthonormal basis.

Proof. By Lemma IV.3.06, there is non-null x1 ∈ X such that x1 · x1 6= 0.

Set b1 =
x1

‖x1‖G
. Now suppose that inductively for 1 ≤ k < n we have

b1,b2, . . . ,bk an orthonormal set in X . Let Bk = span(B1,b2, . . . ,bk).
For x ∈ Bk , say x = x ibi where i = 1, 2, . . . , k, if G(x, y) = x · y = 0 for
all y ∈ Bk then, in particular, x i = x · bi = 0 for i = 1, 2, . . . , k and so
x = 0. That is, G is non-degenerate on Bk .

By Corollary IV.2.05
dim(B⊥

k ) = n − k 6= 0 and by Corollary IV.2.06 G is non-degenerate on
B⊥

k . So by Lemma IV.3.06 again, there is non-cull xk+1 ∈ B⊥
k . Set

bk+1 =
xk+1

‖xk+1‖G
. Then bk+1 is a unit vector orthogonal to b1,b2, . . . ,bk .

That is, {b− 1,b2, . . . ,bk+1} is an orthonormal set. So by Mathematical
Induction, there is an orthonormal set {b1,b2, . . . ,bn} in X . By Exercise
IV.3.2, {b1,b2, . . . ,bn} is linearly independent and, since dim(X ) = n, is
an orthonormal basis.
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Theorem IV.3.08

Theorem IV.3.08

Theorem IV.3.08. For any two orthonormal ordered bases
β = {b1,b2, . . . ,bn} and β∗ = {b′1,b′2, . . . ,b′n} for a metric vector space
(X ,G) with

bi · bj =

{
+1 if i ≤ k
−1 if i > k

and b′i · b′j =

{
+1 if i ≤ `
−1 if i > `,

we have k = `.

Proof. If k = n then G is positive definite and so ` = n. If k = 0 then G
is negative definite and so ` = 0. So, without loss of generality, we take
0 < k < n. Let N = span(bk+1,bk+2, . . . ,bn). Then G is negative definite
since for x = x ibk+i ∈ N we have

G(x, x) = G(x ibk+i , x
ibk+i ) =

n−k∑
i=1

−(x i )2.
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Theorem IV.3.08

Theorem IV.3.08 (continued 1)

Proof (continued). Let W be a subspace of X on which G is positive
definite with basis ω = {ω1, ω2, . . . , ωr}. Consider the set
P = {ω1, ω2, . . . , ωr ,bk+1,bk+2, . . . ,bn}. If

a1ω1 + a2ω2 + · · ·+ arωr + ar+1bk+1 + ar+2bk+2 + · · ·+ ar+(n−k)bn = 0.

Then with the Einstein summation convention this implies

aiωi = −ar+jbk+j (∗)
and hence

(aiωi ) · (aiωi ) = (−ar+jbk+j) · (−ar+jbk+j). (∗∗)
But G (and so dot products) is nonnegative on W and nonpositive on N,
so both sides of (∗∗) must be zero (since aiωi ∈ W and −ar+jbk+j ∈ N).
Therefore both sides of (∗) are 0 (since the positive/negative definiteness
of G implies from the dot product in (∗∗) that the constituent vectors in
(∗∗) must be 0). So ai = 0 for i = 1, 2, . . . , t + (n − k); that is, set P is a
linearly independent set.
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Theorem IV.3.08

Theorem IV.3.08 (continued 2)

Theorem IV.3.08. For any two orthonormal ordered bases
β = {b1,b2, . . . ,bn} and β∗ = {b′1,b′2, . . . ,b′n} for a metric vector space
(X ,G) with

bi · bj =

{
+1 if i ≤ k
−1 if i > k

and b′i · b′j =

{
+1 if i ≤ `
−1 if i > `,

we have k = `.

Proof (continued). Since a linearly independent set of vectors in an
n-dimensional vector space can have at most n elements, then
r + (n − k) ≤ n or r ≤ k or dim(W ) ≤ k where W is an arbitrary
subspace of X on which G is positive definite. Since G is positive definite
on span(b′1,b

′
2, . . . ,b

′
`} then we must have ` ≤ k. By a similar argument

(interchanging the roles of β and β′ and hence interchanging the roles of k
and `) we have k ≤ ` and therefore k = `, as claimed.
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Corollary IV.3.10. Sylvester’s Law of Inertia

Corollary IV.3.10. Sylvester’s Law of Inertia

Corollary IV.3.10. Sylvester’s Law of Inertia.
Let (X ,G) be a metric vector space. For any symmetric bilinear form
F : X × X → R, there is a choice of basis for which F has the form

F(x1b1 + x2b2 + · · ·+ xnbn, x
1b1 + x2b2 + · · ·+ xnbn)

= (x1)2 + (x2)2 + · · ·+ (xn)2 − (xk+1)2 − (xk+2)2 − · · · − (xk+`)2

where k + ` ≤ n. Unless s or ` is zero, the subspace V + spanned by the
basic vectors with F(bi ,bj) = +1 depends on the choice of basis; so does
the subspace V− spanned by those with F(bi ,bi ) = −1. However, V 0,
spanned by those with F(bi ,bj) = 0, depends only on F, as do k and `.

Proof. Set V N = {x ∈ X | F(x, y) = 0 for all y ∈ X}. By linearity in the
first term of F, we see that V N is closed under the vector sums and scalar
multiplication and hence is a subspace of X . Let dim(V N) = n − i and let
{bi+1,bi+2, . . . ,bn} be a basis of V N . Extend this to a basis of X of the
form {b1,b2, . . . ,bi ,bi+1, . . . ,bn} (which can be done by finding a basis
for (V N)⊥ which is of dimension i by Corollary IV.2.05).
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Corollary IV.3.10. Sylvester’s Law of Inertia

Corollary IV.3.10 (continued 1)

Proof (continued). Denote by W the subspace span(b1,b2, . . . ,bi ) of
X . Let w ∈ W . Then F(w, v) = 0 for all v ∈ W implies

F(w, x1b1 + x2b2 + · · · , x ibi ) + x i+1F(w,bi+1) + x i+2F(w,bi+2) + · · ·

+xnF(w,bn) = 0

for all (x1, x2, . . . , xn) since x1b1 + x2b2 + · · ·+ x ibi ∈ W and
bi+1,bi+2, . . . ,bn ∈ (V N)⊥ and W ⊂ (V n)⊥. So by the bilinearity of F
we have F(w, x1b1 + x2b2 + · · ·+ xnbn) = 0 for all (x1, x2, . . . , xn)
implies F(w, x) = 0 for all x ∈ X , which implies w ∈ V N by the definition
of V N . But w ∈ W ⊂ (V N)⊥. Since w ∈ V N then
w ∈ span(b1,b2, . . . ,bi ). hence w = 0. So the restricted symmetric
bilinear form F|W×W is non-degenerate. So (W ,F) is a metric vector
space and by Theorem IV.3.05 there is an orthonormal basis for W .
Replace basis {b1,b2, . . . ,bi} of W with this orthonormal basis of W
(which we also denote as {b1,b2, . . . ,bi}).
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Corollary IV.3.10. Sylvester’s Law of Inertia

Corollary IV.3.10 (continued 2)

Proof (continued). Then {b1,b2, . . . ,bi ,bi+1, . . . ,bn} is a basis of X for
which {b1,b2, . . . ,bi} is an orthonormal set and F(bp,bq) = 0 whenever
1 ≤ p ≤ i and i + 1 ≤ q ≤ n by the definition of V N . By Theorem

IV.3.08, there is 0 ≤ k ≤ i such that bj · bj =

{
+1 if j ≤ k
−1 if k < j ≤ i .

Then

by the bilinearity of F,

F(x1b1 + x2b2 + · · ·+ xnbn, x
1b1 + x2b2 + · · ·+ xnbn)

= F(x1b1 + x2b2 + · · ·+ xnbn, x
1b1 + x2b2 + · · ·+ xnbi )

+F(x1b1 + x2b2 + · · ·+ xnbn, x
i+1bi+1 + x i+2bi+2 + · · ·+ xnbn)

= F(x1b1 + x2b2 + · · ·+ x ibi , x
1b1 + x2b2 + · · ·+ x ibi )

+F(x i+1bi+1 + x i+2bi+2 + · · ·+ xnbn, x
1b1 + x2b2 + · · ·+ x ibi ) + 0

= (x1)2 + (x2)2 + · · ·+ (xk)2 − (xk+1)2 − (xk+2)2 − · · · − (xk+`)2

by the orthonormality of {x1b1 + x2b2 + · · ·+ x ibi}, where K + ` = i . So
the basis exists, as claimed.
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Corollary IV.3.10. Sylvester’s Law of Inertia

Corollary IV.3.10 (continued 3)

Proof (continued). Now if k or ` is zero then F is, respectively, negative
definite and positive definite, regardless of the basis used for (W ,F).
When k 6= 0 6= `, by Theorem IV.3.08, the choice of k (and hence the
choice of `) is independent of the basis of (W ,F). So for k 6= 0 6= `, the
dimensions of V + and V− are determined by F, but the spaces themselves
depend on the choice of the basis since V + = span(b1,b2, . . . ,bn) and
V− = span(bk+1,bk+2, . . . ,bk+`). Space
V 0 = V N = {x ∈ X | F(x, y) = 0 for all y ∈ X} depends only on F, as
claimed.
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Lemma IV.3.11

Lemma IV.3.11

Lemma IV.3.11. Let β = {b1,b2, . . . ,bn} be a basis for (X ,G). Then
the dual basis to β, β∗ = {b1,b2, . . . ,bn}, is an orthonormal basis in the
dual metric G∗ on X ∗ if and only if β is an orthonormal basis for X .

Proof. Basis β of X is orthonormal if and only if
G(bi ,bi ) = bi · bj = ±δij , which is equivalent to

[gij ] =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 0
0 0 · · · 0 −1

 = M

(provided we employ the convention of listing the −1’s “first”). Now
[gij ] = M if and only if the inverse [gij ]

−1 = [g ij ] = M. Then by Note
IV.3.C, G∗(bi ,bj) = g ij so that [g ij ] = M if and only if β∗ is
orthonormal.
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Proof. Basis β of X is orthonormal if and only if
G(bi ,bi ) = bi · bj = ±δij , which is equivalent to

[gij ] =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 0
0 0 · · · 0 −1

 = M

(provided we employ the convention of listing the −1’s “first”). Now
[gij ] = M if and only if the inverse [gij ]

−1 = [g ij ] = M. Then by Note
IV.3.C, G∗(bi ,bj) = g ij so that [g ij ] = M if and only if β∗ is
orthonormal.
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Lemma IV.3.13

Lemma IV.3.13

Lemma IV.3.13. If A is a linear operator on an inner product space
(X ,G), then [AT ]ββ = ([A]ββ)t with respect to any orthonormal basis
β = {b1,b2, . . . ,bn}.

Proof. First, by definition, G↓bi = G↓(bi ) = x∗ where x∗(y) = G(x, y) for
all y ∈ X . So

(G↓bi )(bj) = G(bi ,bj) = bi · bj = δij

for all bj ∈ β. Also for bi ∈ β∗ we have bi (bj) = bibj = δij for all bj ∈ β.
So G↓(bi ) = bi (since these elements of X ∗ are equal on basis β).
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Lemma IV.3.13

Lemma IV.3.13 (continued)

Lemma IV.3.13. If A is a linear operator on an inner product space
(X ,G), then [AT ]ββ = ([A]ββ)t with respect to any orthonormal basis
β = {b1,b2, . . . ,bn}.

Proof (continued). Hence [G↓]
β∗

β is the identity matrix, and so is its

inverse [G↑]
β
β∗ (see Note IV.3.B). So

[AT ]ββ = [G↑A
∗G↓]

β
β by definition of AT

= [G↑]
β
β∗ [A

∗]β
∗

β∗ [G↓]
β∗

β

= [A∗]β
∗

β∗ since [G↑]
β∗

β∗ = [G↓]
β∗

β = I

= ([A]ββ)t by Theorem III.1.A.
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Lemma IV.3.14

Lemma IV.3.14

Lemma IV.3.14. If A is a linear operator on a metric vector space (X ,G)
then with respect to orthonormal basis {b1,b2, . . . ,bn} we have

[AT ]ij =

(
gjj

gii

)
[A]ji =

(
gjj

gii

)
[[A]t ]ij

for 1 ≤ i , j ≤ n, where [A]ij = aij = ai
j is the entry in the ith row and jth

column of [A]ββ and there is no summation over i and j (though the
Einstein convention implies it on the right hand side of the above
equation).

Proof. First Abj has coordinate vector with respect to β of

[aij ][0 0 · · · 0 1 0 · · · 0 0]t = [a1j a2j · · · anj ]
t

↑
j

so that Abj = akjbk . So we have

(Abj) · b` = (akjbk) · b` = akj(bk · b`) = a`jb` · b` = [A]`j (b` · b`). (∗)
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Lemma IV.3.14

Lemma IV.3.14 (continued 1)

Proof (continued). Let [AT ]ββ = [AT ] = [cij ]. Then ATb` = ck`b`. So

(ATb`) · bi = (ck`bk) · bi = ck`(bk · bi ) = ci`bi · bi = [AT ]i`(bi · bi ),

or [AT ]i` =
(ATb`) · bi

bi · bi
. Hence

[AT ]i` =
(ATb`) · bi

bi · bi

=
(G↑A

∗G↓b`) · bi

bi · bi
by the definition of AT

=
G(G↑A

∗G↓b`,bi )

bi · bi
since G determines dot products in (X ,G)

=
(A∗G↓b`)(bi )

bi · bi
since G↑(x

∗) = x where x∗(y) = G(x, y) = x · y

for all y ∈ X ; see Theorem IV.1.09 and Note IV.1.A

(here, x∗ = A∗G↓b` and we take y = bi )
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Lemma IV.3.14

Lemma IV.3.14 (continued 2)

Proof (continued). . . .

[AT ]i` =
(A∗G↓b`)(bi )

bi · bi

=
(g↓b`A)(bi )

bi · bi
since A∗(f) = f ◦ A by the definition of dual map

=
(G↓b`)(Ab`)

bi · bi
since function composition is associative

=
b` · (Abi )

bi · bi
since G↓(x) = x∗ where x∗(y) = G(x, y) = x · y

for all y ∈ X ; see Theorem IV.1.09

=
[A]`i b` · b`

bi · bi
by (∗)

= [A]`i
g``

gii
,

or [AT ]ij = [A]ji gii/gjj , as claimed.
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Lemma IV.3.16

Lemma IV.3.16

Lemma IV.3.16. A linear operator A on an inner product space is
orthogonal if and only if with respect to an orthonormal basis it has a
matrix whose columns (respectively, rows) regarded as column
(respectively, row) vectors form an orthonormal set in the standard inner
product on Rn.

Proof. By Lemma IV.2.09, A is orthogonal if and only if ATA = I. Let
[AT ] = [c i

j ] = cij . Then ATA = I is equivalent to [AT ] = [A] = [I] or

[AT ]ki [Ai
j = ckiaij = ck

i ai
j = δk

j . By Lemma IV.3.13, cki = c j
i = ai

k = aik

and so the orthogonality of A is equivalent to ckiaij = aikaij = ai
kai

j = δk
j .

This is equivalent to the orthonormality of the columns of [A], as claimed.

By Corollary IV.2.10, A is orthogonal if and only if AT is orthogonal. As
argued above, AT is orthogonal if and only if the columns of [AT ] are
orthonormal. The columns of [AT ] are the rows of [A] by Lemma IV.3.13,
so A is orthogonal if and only if the rows of [A] are orthonormal, as
claimed.
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