Differential Geometry

Chapter IV. Metric Vector Spaces

IV.4. Diagonalizing Symmetric Operators —Proofs of Theorems

Table of contents

(1) Lemma IV.4.02
(2) Lemma IV.4.03
(3) Theorem IV.4.04
(4) Theorem IV.4.05
(5) Corollary IV.4.07
(6) Corollary IV.4.09
(7) Lemma IV.4.11
(8) Lemma IV.4.13

Lemma IV.4.02

Lemma IV.4.02. If \mathbf{x} is a maximal vector of a symmetric operator \mathbf{A} on an inner product space (X, \mathbf{G}) then \mathbf{x} is an eigenvector of the operator \mathbf{A}^{2}, belonging to the eigenvalue $\|\mathbf{A}\|^{2}$.

Proof. We have

$$
\begin{aligned}
\|\mathbf{A}\|^{2} & =\|\mathbf{A} \mathbf{x}\|^{2} \text { since } \mathbf{x} \text { is a maximal vector } \\
& =\mathbf{A} \mathbf{x} \cdot \mathbf{A} \mathbf{x}=\mathbf{A}^{T} \mathbf{A} \mathbf{x} \cdot \mathbf{x} \text { by definition of transpose } \\
& =\mathbf{A}^{2} \mathbf{x} \cdot \mathbf{x} \text { since } \mathbf{A} \text { is symmetric, } \mathbf{A}^{T}=\mathbf{A} \\
& \leq\left\|\mathbf{A}^{\times} \mathbf{x}\right\|\|\mathbf{x}\| \text { by Schwarz's Inequality (Lemma IV.1.07) } \\
& =\left\|\mathbf{A}^{2} \mathbf{x}\right\| \text { since }\|\mathbf{x}\|=1 \\
& =\|\mathbf{A}(\mathbf{A} \mathbf{x})\| \leq\|\mathbf{A}\|\|\mathbf{A} \boldsymbol{x}\| \text { by Exercise IV.4.1 } \\
& \leq\|\mathbf{A}\|(\|\mathbf{A}\|\|\mathbf{x}\|) \text { by Exercise IV.4.1 } \\
& =\|\mathbf{A}\|^{2} \text { since }\|\mathbf{x}\|=1 .
\end{aligned}
$$

Lemma IV.4.02

Lemma IV.4.02. If \mathbf{x} is a maximal vector of a symmetric operator \mathbf{A} on an inner product space (X, \mathbf{G}) then \mathbf{x} is an eigenvector of the operator \mathbf{A}^{2}, belonging to the eigenvalue $\|\mathbf{A}\|^{2}$.

Proof. We have

$$
\begin{aligned}
\|\mathbf{A}\|^{2} & =\|\mathbf{A} \mathbf{x}\|^{2} \text { since } \mathbf{x} \text { is a maximal vector } \\
& =\mathbf{A} \mathbf{x} \cdot \mathbf{A} \mathbf{x}=\mathbf{A}^{T} \mathbf{A} \mathbf{x} \cdot \mathbf{x} \text { by definition of transpose } \\
& =\mathbf{A}^{2} \mathbf{x} \cdot \mathbf{x} \text { since } \mathbf{A} \text { is symmetric, } \mathbf{A}^{T}=\mathbf{A} \\
& \leq\left\|\mathbf{A}^{\times} \mathbf{x}\right\|\|\mathbf{x}\| \text { by Schwarz's Inequality (Lemma IV.1.07) } \\
& =\left\|\mathbf{A}^{2} \mathbf{x}\right\| \text { since }\|\mathbf{x}\|=1 \\
& =\|\mathbf{A}(\mathbf{A} \mathbf{x})\| \leq\|\mathbf{A}\|\|\mathbf{A}\| \text { by Exercise IV.4.1 } \\
& \leq\|\mathbf{A}\|(\|\mathbf{A}\|\|\mathbf{x}\|) \text { by Exercise IV.4.1 } \\
& =\|\mathbf{A}\|^{2} \text { since }\|\mathbf{x}\|=1 .
\end{aligned}
$$

Lemma IV.4.02 (continued)

Lemma IV.4.02. If \mathbf{x} is a maximal vector of a symmetric operator \mathbf{A} on an inner product space (X, \mathbf{G}) then \mathbf{x} is an eigenvector of the operator \mathbf{A}^{2}, belonging to the eigenvalue $\|\mathbf{A}\|^{2}$.

Proof (continued). But the all inequalities must in fact be equalities. This means $\mathbf{A}^{2} \mathbf{x} \cdot \mathbf{x}=\left\|\mathbf{A}^{2} \mathbf{x}\right\|\|\mathbf{x}\|$ so that we have equality in Schwarz's Inequality and hence (by Lemma IV.1.07) we have $\mathbf{A}^{2} \mathbf{x}=\mathbf{x} 1$ for some $a \in \mathbb{R}$. So \mathbf{x} is an eigenvector of \mathbf{A}^{2} with eigenvalue a where, by the equalities above, $a=a(\mathbf{x} \cdot \mathbf{x})=(\mathbf{x} a) \cdot \mathbf{x}=\left(\mathbf{A}^{2} \mathbf{x}\right) \cdot \mathbf{x}=\|\mathbf{A}\|^{2}$, as claimed.

Lemma IV.4.03

Lemma IV.4.03. A symmetric operator \mathbf{A} on a finite dimensional inner product space has an eigenvector belonging to an eigenvalue $+\|\mathbf{A}\|$ on $-\|\mathbf{A}\|$.

Proof. Let \mathbf{x} be a maximal vector of \mathbf{A} (which exists since the inner product space if finite dimensional). Then by Lemma IV.4.02, \mathbf{x} is an eigenvector of \mathbf{A}^{2} with eigenvalue $\|\mathbf{A}\|^{2}$, so $\mathbf{A}^{2} \mathbf{x}=\mathbf{x}\|\mathbf{A}\|^{2}$ and $\left(\mathbf{A}-\|\mathbf{A}\|^{2} \mathbf{I}\right) \mathrm{x}=0$.

Lemma IV.4.03

Lemma IV.4.03. A symmetric operator \mathbf{A} on a finite dimensional inner product space has an eigenvector belonging to an eigenvalue $+\|\mathbf{A}\|$ on $-\|\mathbf{A}\|$.

Proof. Let \mathbf{x} be a maximal vector of \mathbf{A} (which exists since the inner product space if finite dimensional). Then by Lemma IV.4.02, \mathbf{x} is an eigenvector of \mathbf{A}^{2} with eigenvalue $\|\mathbf{A}\|^{2}$, so $\mathbf{A}^{2} \mathbf{x}=\mathbf{x}\|\mathbf{A}\|^{2}$ and $\left(\mathbf{A}-\|\mathbf{A}\|^{2} \mathbf{I}\right) \mathbf{x}=\mathbf{0}$. Hence $(\mathbf{A}+\|\mathbf{A}\| \|)(\mathbf{A}-\|\mathbf{A}\| \|) \mathbf{x}=0$. So either $(\mathbf{A}-\|\mathbf{A}\| \mathbf{I})=\mathbf{0}$, in which case x is an eigenvector of \mathbf{A} with eigenvalue $\|\mathbf{A}\|$, or $(\mathbf{A}-\|\mathbf{A}\| \mathbf{I}) \mathbf{x}$ is an eigenvector of \mathbf{A} with eigenvalue $-\|\mathbf{A}\|$, as claimed.

Lemma IV.4.03

Lemma IV.4.03. A symmetric operator \mathbf{A} on a finite dimensional inner product space has an eigenvector belonging to an eigenvalue $+\|\mathbf{A}\|$ on $-\|\mathbf{A}\|$.

Proof. Let \mathbf{x} be a maximal vector of \mathbf{A} (which exists since the inner product space if finite dimensional). Then by Lemma IV.4.02, \mathbf{x} is an eigenvector of \mathbf{A}^{2} with eigenvalue $\|\mathbf{A}\|^{2}$, so $\mathbf{A}^{2} \mathbf{x}=\mathbf{x}\|\mathbf{A}\|^{2}$ and $\left(\mathbf{A}-\|\mathbf{A}\|^{2} \mathbf{I}\right) \mathbf{x}=\mathbf{0}$. Hence $(\mathbf{A}+\|\mathbf{A}\| \mathbf{I})(\mathbf{A}-\|\mathbf{A}\| \mathbf{I}) \mathbf{x}=\mathbf{0}$. So either $(\mathbf{A}-\|\mathbf{A}\| \mathbf{I})=\mathbf{0}$, in which case \mathbf{x} is an eigenvector of \mathbf{A} with eigenvalue $\|\mathbf{A}\|$, or $(\mathbf{A}-\|\mathbf{A}\| \mathbf{I}) \mathbf{x}$ is an eigenvector of \mathbf{A} with eigenvalue $-\|\mathbf{A}\|$, as claimed.

Theorem IV.4.04

Lemma IV.4.04. If \mathbf{X} is an eigenvector of a self-adjoint linear operator \mathbf{A} on a metric vector space then $\mathbf{x} \cdot \mathbf{y}=0$ implies $\mathbf{x} \cdot \mathbf{A y}=0$. That is, $\mathbf{A}\left(\mathbf{x}^{\perp}\right) \subseteq \mathbf{x}^{\perp}$ and so the map $\mathbf{y} \mapsto \mathbf{A} \mathbf{y}$ is an operator on \mathbf{x}^{\perp}, called the operator on \mathbf{x}^{\perp} induced by \mathbf{A}.

Proof. Let λ be the eigenvalue corresponding to eigenvector \mathbf{x}. Then $\mathbf{x} \cdot \mathbf{y}=0$ implies $\lambda(\mathbf{x} \cdot \mathbf{y})=0$, or $(\mathbf{x} \lambda) \cdot \mathbf{y}=0$ or $(\mathbf{A x}) \cdot \mathbf{y}=0$. Therefore $\mathbf{x} \cdot \mathbf{A}^{\top} \mathbf{y}=0$ by the definition of \mathbf{A}^{\top} and, since \mathbf{A} is hypothesized to be symmetric, $\mathbf{x} \cdot(\mathbf{A y})=0$, as claimed.

Theorem IV.4.04

Lemma IV.4.04. If \mathbf{X} is an eigenvector of a self-adjoint linear operator \mathbf{A} on a metric vector space then $\mathbf{x} \cdot \mathbf{y}=0$ implies $\mathbf{x} \cdot \mathbf{A y}=0$. That is, $\mathbf{A}\left(\mathbf{x}^{\perp}\right) \subseteq \mathbf{x}^{\perp}$ and so the map $\mathbf{y} \mapsto \mathbf{A} \mathbf{y}$ is an operator on \mathbf{x}^{\perp}, called the operator on \mathbf{x}^{\perp} induced by \mathbf{A}.

Proof. Let λ be the eigenvalue corresponding to eigenvector \mathbf{x}. Then $\mathbf{x} \cdot \mathbf{y}=0$ implies $\lambda(\mathbf{x} \cdot \mathbf{y})=0$, or $(\mathbf{x} \lambda) \cdot \mathbf{y}=0$ or $(\mathbf{A x}) \cdot \mathbf{y}=0$. Therefore $\mathbf{x} \cdot \mathbf{A}^{T} \mathbf{y}=0$ by the definition of \mathbf{A}^{T} and, since \mathbf{A} is hypothesized to be symmetric, $\mathbf{x} \cdot(\mathbf{A y})=0$, as claimed.

Theorem IV.4.05

Theorem IV.4.05. If \mathbf{A} is a symmetric linear operator on a finite dimensional inner product space X, then X has an orthonormal basis of eigenvectors of \mathbf{A}.

Proof. Let $\operatorname{dim}(X)=n$. By Lemma IV.4.03 there is some eigenvector x_{1} of \mathbf{A} corresponding to real eigenvalue $\pm\|\mathbf{A}\|$. Set $\mathbf{b}=\mathbf{x}_{1} /\left\|\mathbf{x}_{1}\right\|$ so that \mathbf{b} is a unit eigenvector. Since \mathbf{A} is symmetric by hypothesis, then it is self-adjoint by the definition of symmetric. By Lemma IV.4.04 there is a linear operator $\mathbf{A}^{\prime}: \mathbf{x}^{\perp} \rightarrow \mathbf{b}^{\perp}$ defined as $\mathbf{A}^{\prime}(\mathbf{x})=\mathbf{A} \mathbf{x}$. Since \mathbf{A} is symmetric on X then \mathbf{A}^{\prime} (which is just \mathbf{A} restricted to \mathbf{B}^{\perp}) is symmetric on \mathbf{b}^{\perp} (with respect to the inner product restricted to \mathbf{b}^{\perp}).

Theorem IV.4.05

Theorem IV.4.05. If \mathbf{A} is a symmetric linear operator on a finite dimensional inner product space X, then X has an orthonormal basis of eigenvectors of \mathbf{A}.

Proof. Let $\operatorname{dim}(X)=n$. By Lemma IV.4.03 there is some eigenvector \mathbf{x}_{1} of \mathbf{A} corresponding to real eigenvalue $\pm\|\mathbf{A}\|$. Set $\mathbf{b}=\mathbf{x}_{1} /\left\|\mathbf{x}_{1}\right\|$ so that \mathbf{b} is a unit eigenvector. Since \mathbf{A} is symmetric by hypothesis, then it is self-adjoint by the definition of symmetric. By Lemma IV.4.04 there is a linear operator $\mathbf{A}^{\prime}: \mathbf{x}^{\perp} \rightarrow \mathbf{b}^{\perp}$ defined as $\mathbf{A}^{\prime}(\mathbf{x})=\mathbf{A} \mathbf{x}$. Since \mathbf{A} is symmetric on X then \mathbf{A}^{\prime} (which is just \mathbf{A} restricted to \mathbf{B}^{\perp}) is symmetric on \mathbf{b}^{\perp} (with respect to the inner product restricted to \mathbf{b}^{\perp}). By Lemma IV.4.03 applied to inner product space \mathbf{b}^{\perp} and linear operator \mathbf{A}^{\prime} there is an eigenvector \mathbf{b}_{2} (a unit vector, without loss of generality, since eigenvectors are by definition nonzero) of \mathbf{A}^{\prime} corresponding to real eigenvalue $\pm\left\|\mathbf{A}^{\prime}\right\|$. Since $\mathbf{b}_{2} \in \mathbf{b}^{\perp}$ then $\mathbf{A}^{\prime} \mathbf{b}_{2}=\mathbf{A} \mathbf{b}_{2}$ and so \mathbf{b}_{2} is also an eigenvector fo \mathbf{A} with the same eigenvalue.

Theorem IV.4.05

Theorem IV.4.05. If \mathbf{A} is a symmetric linear operator on a finite dimensional inner product space X, then X has an orthonormal basis of eigenvectors of \mathbf{A}.

Proof. Let $\operatorname{dim}(X)=n$. By Lemma IV.4.03 there is some eigenvector \mathbf{x}_{1} of \mathbf{A} corresponding to real eigenvalue $\pm\|\mathbf{A}\|$. Set $\mathbf{b}=\mathbf{x}_{1} /\left\|\mathbf{x}_{1}\right\|$ so that \mathbf{b} is a unit eigenvector. Since \mathbf{A} is symmetric by hypothesis, then it is self-adjoint by the definition of symmetric. By Lemma IV.4.04 there is a linear operator $\mathbf{A}^{\prime}: \mathbf{x}^{\perp} \rightarrow \mathbf{b}^{\perp}$ defined as $\mathbf{A}^{\prime}(\mathbf{x})=\mathbf{A} \mathbf{x}$. Since \mathbf{A} is symmetric on X then \mathbf{A}^{\prime} (which is just \mathbf{A} restricted to \mathbf{B}^{\perp}) is symmetric on \mathbf{b}^{\perp} (with respect to the inner product restricted to \mathbf{b}^{\perp}). By Lemma IV.4.03 applied to inner product space \mathbf{b}^{\perp} and linear operator \mathbf{A}^{\prime} there is an eigenvector \mathbf{b}_{2} (a unit vector, without loss of generality, since eigenvectors are by definition nonzero) of \mathbf{A}^{\prime} corresponding to real eigenvalue $\pm\left\|\mathbf{A}^{\prime}\right\|$. Since $\mathbf{b}_{2} \in \mathbf{b}^{\perp}$ then $\mathbf{A}^{\prime} \mathbf{b}_{2}=\mathbf{A} \mathbf{b}_{2}$ and so \mathbf{b}_{2} is also an eigenvector fo \mathbf{A} with the same eigenvalue.

Theorem IV.4.05 (continued)

Theorem IV.4.05. If \mathbf{A} is a symmetric linear operator on a finite dimensional inner product space X, then X has an orthonormal basis of eigenvectors of \mathbf{A}.

Proof (continued). So we have an orthonormal set $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ of eigenvectors of \mathbf{A}. Let $S_{1}=\left(\operatorname{span}\left(\mathbf{b}_{1}\right)\right)^{\perp}$ and $S_{2}=\left(\operatorname{span}\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)\right)^{\perp}$, so that, by Corollary IV.2.05, $\operatorname{dim}\left(S_{1}\right)=n-1$ and $\operatorname{dim}\left(S_{2}\right)=n-2$. We can now inductively find eigenvectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ of \mathbf{A} with real eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, respectively (and subspaces $S_{1}, S_{2}, \ldots, S_{n}$ of X such that $\left.\operatorname{dim}\left(S_{k}\right)=n-k\right)$, just as we did for \mathbf{b}_{1} and \mathbf{b}_{2}. Since $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ is an orthonormal set of eigenvectors in X where $\operatorname{dim}(X)=n$, then $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ is an orthonormal basis of eigenvectors of \mathbf{A} for X.

Corollary IV.4.07

Corollary IV.4.07. If \mathbf{A} is a symmetric linear operator on a finite dimensional inner product space with orthonormal basis β and if μ is a root of multiplicity m of the characteristic equation $\operatorname{det}\left([\mathbf{A}-\lambda \mathbf{I}]_{\beta}^{\beta}\right)=0$ then the eigenspace belonging to μ has dimension m.

Proof. By Corollary IV.4.06, $[\mathbf{A}]_{\beta}^{\beta}$ is a diagonal matrix with diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ (the not-necessarily-distinct eigenvalues of \mathbf{A}). Then by the Fundamental Theorem of Algebra

$$
\operatorname{det}\left([\mathbf{A}-\lambda \mathbf{I}]_{\beta}^{\beta}\right)=\operatorname{det}\left([\mathbf{A}]_{\beta}^{\beta}-\lambda[\mathbf{I}]_{\beta}^{\beta}\right)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right) .
$$

Corollary IV.4.07

Corollary IV.4.07. If \mathbf{A} is a symmetric linear operator on a finite dimensional inner product space with orthonormal basis β and if μ is a root of multiplicity m of the characteristic equation $\operatorname{det}\left([\mathbf{A}-\lambda \mathbf{I}]_{\beta}^{\beta}\right)=0$ then the eigenspace belonging to μ has dimension m.

Proof. By Corollary IV.4.06, $[\mathbf{A}]_{\beta}^{\beta}$ is a diagonal matrix with diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ (the not-necessarily-distinct eigenvalues of \mathbf{A}). Then by the Fundamental Theorem of Algebra

$$
\operatorname{det}\left([\mathbf{A}-\lambda \mathbf{I}]_{\beta}^{\beta}\right)=\operatorname{det}\left([\mathbf{A}]_{\beta}^{\beta}-\lambda[\mathbf{I}]_{\beta}^{\beta}\right)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right) .
$$

Since μ is a root of the characteristic equation of multiplicity m, then say $\lambda_{j_{1}} \lambda_{j_{2}}=\cdots=\lambda_{j_{m}}=\mu$. Then the eigenspace of μ is spanned by $\mathbf{b}_{j_{1}}, \mathbf{b}_{j_{2}}, \ldots, \mathbf{b}_{j_{m}}$ and since these vectors are orthonormal then they are linearly independent and hence a basis for the eigenspace of μ. So the dimensional of this eigenspace is m, as claimed.

Corollary IV.4.07

Corollary IV.4.07. If \mathbf{A} is a symmetric linear operator on a finite dimensional inner product space with orthonormal basis β and if μ is a root of multiplicity m of the characteristic equation $\operatorname{det}\left([\mathbf{A}-\lambda \mathbf{I}]_{\beta}^{\beta}\right)=0$ then the eigenspace belonging to μ has dimension m.

Proof. By Corollary IV.4.06, $[\mathbf{A}]_{\beta}^{\beta}$ is a diagonal matrix with diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ (the not-necessarily-distinct eigenvalues of \mathbf{A}). Then by the Fundamental Theorem of Algebra

$$
\operatorname{det}\left([\mathbf{A}-\lambda \mathbf{I}]_{\beta}^{\beta}\right)=\operatorname{det}\left([\mathbf{A}]_{\beta}^{\beta}-\lambda[\mathbf{I}]_{\beta}^{\beta}\right)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right) .
$$

Since μ is a root of the characteristic equation of multiplicity m, then say $\lambda_{j_{1}} \lambda_{j_{2}}=\cdots=\lambda_{j_{m}}=\mu$. Then the eigenspace of μ is spanned by $\mathbf{b}_{j_{1}}, \mathbf{b}_{j_{2}}, \ldots, \mathbf{b}_{j_{m}}$ and since these vectors are orthonormal then they are linearly independent and hence a basis for the eigenspace of μ. So the dimensional of this eigenspace is m, as claimed.

Corollary IV.4.09

Corollary IV.4.09. In an inner product space (X, \mathbf{G}) for any symmetric bilinear form \mathbf{h} on X we can find an orthonormal basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ for X such that $\mathbf{h}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=0$ for $i \neq j$.
Proof. Let $\mathbf{x} \in X$ and define $\mathbf{h}_{\mathbf{x}}: X \rightarrow \mathbb{R}$ as $\mathbf{h}_{\mathbf{x}}(\mathbf{y})=\mathbf{h}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{y} \in X$ (so $\mathbf{h}_{\mathbf{x}} \in X^{*}$). Next define $\mathbf{A}_{\mathbf{h}}: X \rightarrow X$ as $\mathbf{A}_{\mathbf{h}}(\mathbf{x})=\mathbf{G}_{\uparrow}\left(\mathbf{h}_{\mathbf{x}}\right)$ for all $\mathbf{x} \in X$. Then we have for all $\mathbf{y} \in X$,

$$
\begin{aligned}
\left(\mathbf{A}_{\mathbf{h}} \mathbf{x}\right) \cdot \mathbf{y}= & \mathbf{G}_{\uparrow}\left(\mathbf{h}_{\mathbf{x}}\right) \cdot \mathbf{y}=\mathbf{G}\left(\mathbf{G}_{\uparrow}\left(\mathbf{h}_{\mathbf{x}}\right), \mathbf{y}\right) \\
= & \mathbf{h}_{\mathbf{x}}(\mathbf{y}) \text { since } \mathbf{G}_{\uparrow}\left(\mathbf{x}^{*} \text { where } \mathbf{x}^{*}(\mathbf{y})=\mathbf{G}(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{y}\right. \text { for all } \\
& \left.\mathbf{y} \in X ; \text { see Theorem IV.1.09 and Note IV.1.A (here } \mathbf{x}^{*}=\mathbf{h}_{\mathbf{x}}\right) \\
= & \mathbf{h}(\mathbf{x}, \mathbf{y})=\mathbf{h}(\mathbf{y}, \mathbf{x}) \text { since } \mathbf{h} \text { is symmetric by hypothesis } \\
= & \mathbf{y}(\mathbf{x})=\left(\mathbf{A}_{\mathbf{h}} \mathbf{y}\right) \cdot \mathbf{x} \text { as just established } \\
& (\text { with } \mathbf{x} \text { and } \mathbf{y} \text { interchanged) } \\
= & \mathbf{x} \cdot\left(\mathbf{A}_{\mathbf{h}} \mathbf{y}\right) \text { since } \mathbf{G} \text { (and so dot product) is symmetric because } \\
& (X, \mathbf{G}) \text { is an inner product space. }
\end{aligned}
$$

Corollary IV.4.09

Corollary IV.4.09. In an inner product space (X, \mathbf{G}) for any symmetric bilinear form \mathbf{h} on X we can find an orthonormal basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ for X such that $\mathbf{h}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=0$ for $i \neq j$.
Proof. Let $\mathbf{x} \in X$ and define $\mathbf{h}_{\mathbf{x}}: X \rightarrow \mathbb{R}$ as $\mathbf{h}_{\mathbf{x}}(\mathbf{y})=\mathbf{h}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{y} \in X$ (so $\mathbf{h}_{\mathbf{x}} \in X^{*}$). Next define $\mathbf{A}_{\mathbf{h}}: X \rightarrow X$ as $\mathbf{A}_{\mathbf{h}}(\mathbf{x})=\mathbf{G}_{\uparrow}\left(\mathbf{h}_{\mathbf{x}}\right)$ for all $\mathbf{x} \in X$. Then we have for all $\mathbf{y} \in X$,

$$
\left(\mathbf{A}_{\mathbf{h}} \mathbf{x}\right) \cdot \mathbf{y}=\mathbf{G}_{\uparrow}\left(\mathbf{h}_{\mathbf{x}}\right) \cdot \mathbf{y}=\mathbf{G}\left(\mathbf{G}_{\uparrow}\left(\mathbf{h}_{\mathrm{x}}\right), \mathbf{y}\right)
$$

$=\mathbf{h}_{\mathbf{x}}(\mathbf{y})$ since $\mathbf{G}_{\uparrow}\left(\mathbf{x}^{*}\right.$ where $\mathbf{x}^{*}(\mathbf{y})=\mathbf{G}(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{y} \in X$; see Theorem IV.1.09 and Note IV.1.A (here $\mathbf{x}^{*}=\mathbf{h}_{\mathbf{x}}$)
$=\mathbf{h}(\mathbf{x}, \mathbf{y})=\mathbf{h}(\mathbf{y}, \mathbf{x})$ since \mathbf{h} is symmetric by hypothesis
$=\mathbf{y}(\mathbf{x})=\left(\mathbf{A}_{\mathbf{h}} \mathbf{y}\right) \cdot \mathbf{x}$ as just established
(with \mathbf{x} and \mathbf{y} interchanged)
$=\mathbf{x} \cdot\left(\mathbf{A}_{\mathbf{h}} \mathbf{y}\right)$ since \mathbf{G} (and so dot product) is symmetric because (X, \mathbf{G}) is an inner product space.

Corollary IV.4.09 (continued)

Corollary IV.4.09. In an inner product space (X, \mathbf{G}) for any symmetric bilinear form \mathbf{h} on X we can find an orthonormal basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ for X such that $\mathbf{h}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=0$ for $i \neq j$.

Proof (continued). Since $\left(\mathbf{A}_{\mathbf{h}} \mathbf{x}\right) \cdot \mathbf{y}=\mathbf{x} \cdot\left(\mathbf{A}_{\mathbf{h}} \mathbf{y}\right)$ for all $\mathbf{x}, \mathbf{y} \in X$ then $\mathbf{A}_{\mathbf{h}}$ is self-adjoint and since (X, \mathbf{G}) is an inner product space then, by definition, $\mathbf{A}_{\mathbf{h}}$ is a symmetric linear operator. By Theorem IV.4.05, there is an orthonormal basis $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ for X of eigenvectors of $\mathbf{A}_{\boldsymbol{h}}$; say $\mathbf{A}_{\mathbf{h}} \mathbf{b}_{i}=\lambda_{i} \mathbf{b}_{i}$ for each i. Then for this orthonormal basis,

$$
\begin{aligned}
\mathbf{h}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right) & =\left(\mathbf{A}_{\mathbf{h}} \mathbf{b}_{i}\right) \cdot \mathbf{b}_{j} \text { since }\left(\mathbf{A}_{\mathbf{h}} \mathbf{x}\right) \cdot \mathbf{y}=\mathbf{h}(\mathbf{x}, \mathbf{y}), \text { as established above } \\
& =\left(\lambda_{i} \mathbf{b}_{i}\right) \cdot \mathbf{b}_{j}=\lambda_{i}\left(\mathbf{b}_{i} \cdot \mathbf{b}_{j}\right)=0 \text { if } i \neq j,
\end{aligned}
$$

as claimed.

Lemma IV.4.11

Lemma IV.4.11. If \mathbf{h} is isotropic, then $\mathbf{h}=\lambda \mathbf{G}$ for some $\lambda \in \mathbb{R}$ and $\mathbf{A}_{\mathbf{h}}=\lambda \mathbf{I}$.

Proof. If \mathbf{h} is isotropic then there is $\lambda \in \mathbb{R}$ (λ is real by Corollary IV.2.08, since $\mathbf{A}_{\mathbf{h}}$ is symmetric as established in the proof of Theorem IV.4.09) such that $\mathbf{A}_{\mathbf{h}} \mathbf{x}=\lambda \mathbf{x}$ for all $\mathbf{x} \in X$. Then $\mathbf{A}_{\mathbf{h}} \mathbf{x}-\lambda \mathbf{x}=\left(\mathbf{A}_{\mathbf{h}}-\lambda \mathbf{I}\right) \mathbf{x}=\mathbf{0}$ for all $\mathbf{x} \in X$; that is, $\mathbf{A}_{\mathbf{h}}=\lambda \mathbf{I}=\mathbf{0}$ (the $\mathbf{0}$ operator) and $\mathbf{A}_{\mathbf{h}}=\lambda \mathbf{I}$, as claimed.

Lemma IV.4.11

Lemma IV.4.11. If \mathbf{h} is isotropic, then $\mathbf{h}=\lambda \mathbf{G}$ for some $\lambda \in \mathbb{R}$ and $\mathbf{A}_{\mathbf{h}}=\lambda \mathbf{I}$.

Proof. If \mathbf{h} is isotropic then there is $\lambda \in \mathbb{R}(\lambda$ is real by Corollary IV.2.08, since $\mathbf{A}_{\mathbf{h}}$ is symmetric as established in the proof of Theorem IV.4.09) such that $\mathbf{A}_{\mathbf{h}} \mathbf{x}=\lambda \mathbf{x}$ for all $\mathbf{x} \in X$. Then $\mathbf{A}_{\mathbf{h}} \mathbf{x}-\lambda \mathbf{x}=\left(\mathbf{A}_{\mathbf{h}}-\lambda \mathbf{I}\right) \mathbf{x}=\mathbf{0}$ for all $\mathbf{x} \in X$; that is, $\mathbf{A}_{\mathbf{h}}=\lambda \mathbf{I}=\mathbf{0}$ (the $\mathbf{0}$ operator) and $\mathbf{A}_{\mathbf{h}}=\lambda \mathbf{I}$, as claimed. As shown in the proof of Theorem IV.4.09, $\mathbf{h}(\mathbf{x}, \mathbf{y})=\left(\mathbf{A}_{\mathbf{h}} \mathbf{x}\right) \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in X$, so $\mathbf{h}(\mathbf{x}, \mathbf{y})=\lambda \mathbf{x}) \cdot \mathbf{y}=\lambda(\mathbf{x}, \mathbf{y})=\lambda \mathbf{G}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in X$ and hence $\mathbf{h}=\lambda \mathbf{G}$, as claimed.

Lemma IV.4.11

Lemma IV.4.11. If \mathbf{h} is isotropic, then $\mathbf{h}=\lambda \mathbf{G}$ for some $\lambda \in \mathbb{R}$ and $\mathbf{A}_{\mathbf{h}}=\lambda \mathbf{I}$.

Proof. If \mathbf{h} is isotropic then there is $\lambda \in \mathbb{R}(\lambda$ is real by Corollary IV.2.08, since $\mathbf{A}_{\mathbf{h}}$ is symmetric as established in the proof of Theorem IV.4.09) such that $\mathbf{A}_{\mathbf{h}} \mathbf{x}=\lambda \mathbf{x}$ for all $\mathbf{x} \in X$. Then $\mathbf{A}_{\mathbf{h}} \mathbf{x}-\lambda \mathbf{x}=\left(\mathbf{A}_{\mathbf{h}}-\lambda \mathbf{I}\right) \mathbf{x}=\mathbf{0}$ for all $\mathbf{x} \in X$; that is, $\mathbf{A}_{\mathbf{h}}=\lambda \mathbf{I}=\mathbf{0}$ (the $\mathbf{0}$ operator) and $\mathbf{A}_{\mathbf{h}}=\lambda \mathbf{I}$, as claimed.

As shown in the proof of Theorem IV.4.09, $\mathbf{h}(\mathbf{x}, \mathbf{y})=\left(\mathbf{A}_{\mathbf{h}} \mathbf{x}\right) \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in X$, so $\mathbf{h}(\mathbf{x}, \mathbf{y})=\lambda \mathbf{x}) \cdot \mathbf{y}=\lambda(\mathbf{x}, \mathbf{y})=\lambda \mathbf{G}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in X$ and hence $\mathbf{h}=\lambda \mathbf{G}$, as claimed.

Lemma IV.4.13

Lemma IV.4.13. If a self-adjoint linear operator \mathbf{A} on Lorentz space \mathbb{L}^{4} has a timelike eigenvector \mathbf{v} (i.e., $\mathbf{v} \cdot \mathbf{v}>0$), then \mathbb{L}^{4} has an orthonormal basis of eigenvectors of \mathbf{A}.
Proof. Since \mathbb{L}^{4} is a metric vector space and \mathbf{A} is self-adjoint, then by Lemma IV.2.04 the restriction of \mathbf{A} to \mathbf{v}^{\perp} is a linear operator on \mathbf{v}^{\perp}.

Lemma IV.4.13

Lemma IV.4.13. If a self-adjoint linear operator \mathbf{A} on Lorentz space \mathbb{L}^{4} has a timelike eigenvector \mathbf{v} (i.e., $\mathbf{v} \cdot \mathbf{v}>0$), then \mathbb{L}^{4} has an orthonormal basis of eigenvectors of \mathbf{A}.
Proof. Since \mathbb{L}^{4} is a metric vector space and \mathbf{A} is self-adjoint, then by Lemma IV.2.04 the restriction of \mathbf{A} to \mathbf{v}^{\perp} is a linear operator on \mathbf{v}^{\perp}.
We claim that the metric tensor \mathbf{G} on $\operatorname{span}(\mathbf{x})$ is non-degenerate. If for $\mathbf{x} \in \operatorname{span}(\mathbf{v})$ we have $\mathbf{G}(\mathbf{x}, \mathbf{v} a)=0$ for all $\mathbf{v} a \in \operatorname{span}(\mathbf{v})$, or equivalently for all $a \in \mathbb{R}$, implies $\mathbf{G}(\mathbf{v} b, \mathbf{v} a)=0$ for all $a \in \mathbb{R}$ where $\mathbf{x}=\mathbf{v} b$. So $a b \mathbf{G}(\mathbf{v}, \mathbf{v})=0$ for all $a \in \mathbb{R}$. Since \mathbf{v} is timelike then $\mathbf{G}(\mathbf{v}, \mathbf{v})=\mathbf{v} \cdot \mathbf{v}>0$, so we must have $b=0$ and $\mathbf{x}=\mathbf{v} b=\mathbf{0}$. That is, \mathbf{G} is non-degenerate on $\operatorname{span}(\mathbf{v})$. So by Corollary IV.2.06, G is non-degenerate on \mathbf{v}^{\perp}

Lemma IV.4.13

Lemma IV.4.13. If a self-adjoint linear operator \mathbf{A} on Lorentz space \mathbb{L}^{4} has a timelike eigenvector \mathbf{v} (i.e., $\mathbf{v} \cdot \mathbf{v}>0$), then \mathbb{L}^{4} has an orthonormal basis of eigenvectors of \mathbf{A}.
Proof. Since \mathbb{L}^{4} is a metric vector space and \mathbf{A} is self-adjoint, then by Lemma IV.2.04 the restriction of \mathbf{A} to \mathbf{v}^{\perp} is a linear operator on \mathbf{v}^{\perp}.
We claim that the metric tensor \mathbf{G} on $\operatorname{span}(\mathbf{x})$ is non-degenerate. If for $\mathbf{x} \in \operatorname{span}(\mathbf{v})$ we have $\mathbf{G}(\mathbf{x}, \mathbf{v} a)=0$ for all $\mathbf{v} a \in \operatorname{span}(\mathbf{v})$, or equivalently for all $a \in \mathbb{R}$, implies $\mathbf{G}(\mathbf{v} b, \mathbf{v} a)=0$ for all $a \in \mathbb{R}$ where $\mathbf{x}=\mathbf{v} b$. So $a b \mathbf{G}(\mathbf{v}, \mathbf{v})=0$ for all $a \in \mathbb{R}$. Since \mathbf{v} is timelike then $\mathbf{G}(\mathbf{v}, \mathbf{v})=\mathbf{v} \cdot \mathbf{v}>0$, so we must have $b=0$ and $\mathbf{x}=\mathbf{v} b=\mathbf{0}$. That is, \mathbf{G} is non-degenerate on $\operatorname{span}(\mathbf{v})$. So by Corollary IV.2.06, \mathbf{G} is non-degenerate on \mathbf{v}^{\perp}.

Lemma IV.4.13

Lemma IV.4.13. If a self-adjoint linear operator \mathbf{A} on Lorentz space \mathbb{L}^{4} has a timelike eigenvector \mathbf{v} (i.e., $\mathbf{v} \cdot \mathbf{v}>0$), then \mathbb{L}^{4} has an orthonormal basis of eigenvectors of \mathbf{A}.
Proof. Since \mathbb{L}^{4} is a metric vector space and \mathbf{A} is self-adjoint, then by Lemma IV.2.04 the restriction of \mathbf{A} to \mathbf{v}^{\perp} is a linear operator on \mathbf{v}^{\perp}.
We claim that the metric tensor \mathbf{G} on $\operatorname{span}(\mathbf{x})$ is non-degenerate. If for $\mathbf{x} \in \operatorname{span}(\mathbf{v})$ we have $\mathbf{G}(\mathbf{x}, \mathbf{v} a)=0$ for all $\mathbf{v} a \in \operatorname{span}(\mathbf{v})$, or equivalently for all $a \in \mathbb{R}$, implies $\mathbf{G}(\mathbf{v} b, \mathbf{v} a)=0$ for all $a \in \mathbb{R}$ where $\mathbf{x}=\mathbf{v} b$. So $a b \mathbf{G}(\mathbf{v}, \mathbf{v})=0$ for all $a \in \mathbb{R}$. Since \mathbf{v} is timelike then $\mathbf{G}(\mathbf{v}, \mathbf{v})=\mathbf{v} \cdot \mathbf{v}>0$, so we must have $b=0$ and $\mathbf{x}=\mathbf{v} b=\mathbf{0}$. That is, \mathbf{G} is non-degenerate on $\operatorname{span}(\mathbf{v})$. So by Corollary IV.2.06, \mathbf{G} is non-degenerate on \mathbf{v}^{\perp}.
With $\beta=\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\}$ as an orthonormal basis of \mathbb{L}^{4} we have $k=1$, in the notation of Theorem IV.2.08, since $(1,0,0,0) \cdot(1,0,0,0)=1,(0,1,0,0) \cdot(0,1,0,0)=-1$, $(0,0,1,0) \cdot(0,0,1,0)=-1$, and $(0,0,0,1) \cdot(0,0,0,1)=-1$.

Lemma IV.4.13 (continued)

Lemma IV.4.13. If a self-adjoint linear operator \mathbf{A} on Lorentz space \mathbb{L}^{4} has a timelike eigenvector \mathbf{v} (i.e., $\mathbf{v} \cdot \mathbf{v}>0$), then \mathbb{L}^{4} has an orthonormal basis of eigenvectors of \mathbf{A}.

Proof. So any orthonormal basis of \mathbb{L}^{4} will have $k=1$ by Theorem IV.3.08; that is, any orthonormal basis of \mathbb{L}^{4} will consist of 1 timelike vector and 3 spacelike vectors. As shown in the proof of Theorem IV.3.08 (with $W=\operatorname{span}(\mathbf{v})$ and $N=\mathbf{b}^{\perp}$ in the notation of the proof) we have that \mathbf{G} is negative definite on \mathbf{v}^{\perp}; that is, \mathbf{G} is an inner product on \mathbf{v}^{\perp} (this is the first time we have used a negative definite inner product).

Lemma IV.4.13 (continued)

Lemma IV.4.13. If a self-adjoint linear operator \mathbf{A} on Lorentz space \mathbb{L}^{4} has a timelike eigenvector \mathbf{v} (i.e., $\mathbf{v} \cdot \mathbf{v}>0$), then \mathbb{L}^{4} has an orthonormal basis of eigenvectors of \mathbf{A}.

Proof. So any orthonormal basis of \mathbb{L}^{4} will have $k=1$ by Theorem IV.3.08; that is, any orthonormal basis of \mathbb{L}^{4} will consist of 1 timelike vector and 3 spacelike vectors. As shown in the proof of Theorem IV.3.08 (with $W=\operatorname{span}(\mathbf{v})$ and $N=\mathbf{b}^{\perp}$ in the notation of the proof) we have that \mathbf{G} is negative definite on \mathbf{v}^{\perp}; that is, \mathbf{G} is an inner product on \mathbf{v}^{\perp} (this is the first time we have used a negative definite inner product). So applying Theorem IV.4.05 to inner product space ($\mathbf{v}^{\perp},\left.\mathbf{G}\right|_{\mathbf{v}^{\perp}}$) and symmetric linear operator $\left.\mathbf{A}\right|_{\mathbf{v} \perp}$ (recall that a symmetric operator is a self-adjoint operator on an inner product space), there are 3 spacelike orthonormal eigenvectors of $\left.\mathbf{A}\right|_{v \perp}$ (and so eigenvectors of \mathbf{A} since \mathbf{A} and $\left.\mathbf{A}\right|_{v \perp}$ agree on \mathbf{v}^{\perp}). So these 3 spacelike vectors, along with timelike vector $\mathbf{v} /\|\mathbf{v}\|$, form an orthonormal basis of \mathbb{L}^{4} consisting of eigenvectors of \mathbf{A}.

Lemma IV.4.13 (continued)

Lemma IV.4.13. If a self-adjoint linear operator \mathbf{A} on Lorentz space \mathbb{L}^{4} has a timelike eigenvector \mathbf{v} (i.e., $\mathbf{v} \cdot \mathbf{v}>0$), then \mathbb{L}^{4} has an orthonormal basis of eigenvectors of \mathbf{A}.

Proof. So any orthonormal basis of \mathbb{L}^{4} will have $k=1$ by Theorem IV.3.08; that is, any orthonormal basis of \mathbb{L}^{4} will consist of 1 timelike vector and 3 spacelike vectors. As shown in the proof of Theorem IV.3.08 (with $W=\operatorname{span}(\mathbf{v})$ and $N=\mathbf{b}^{\perp}$ in the notation of the proof) we have that \mathbf{G} is negative definite on \mathbf{v}^{\perp}; that is, \mathbf{G} is an inner product on \mathbf{v}^{\perp} (this is the first time we have used a negative definite inner product). So applying Theorem IV.4.05 to inner product space ($\mathbf{v}^{\perp},\left.\mathbf{G}\right|_{\mathbf{v}}{ }^{\perp}$) and symmetric linear operator $\left.\mathbf{A}\right|_{\mathbf{v} \perp}$ (recall that a symmetric operator is a self-adjoint operator on an inner product space), there are 3 spacelike orthonormal eigenvectors of $\left.\mathbf{A}\right|_{\mathbf{v} \perp}$ (and so eigenvectors of \mathbf{A} since \mathbf{A} and $\left.\mathbf{A}\right|_{\mathbf{v} \perp}$ agree on \mathbf{v}^{\perp}). So these 3 spacelike vectors, along with timelike vector $\mathbf{v} /\|\mathbf{v}\|$, form an orthonormal basis of \mathbb{L}^{4} consisting of eigenvectors of \mathbf{A}.

