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Lemma IV.4.02

Lemma IV.4.02

Lemma IV.4.02. If x is a maximal vector of a symmetric operator A on
an inner product space (X ,G) then x is an eigenvector of the operator A2,
belonging to the eigenvalue ‖A‖2.

Proof. We have

‖A‖2 = ‖Ax‖2 since x is a maximal vector

= Ax · Ax = ATAx · x by definition of transpose

= A2x · x since A is symmetric, AT = A

≤ ‖Axx‖‖x‖ by Schwarz’s Inequality (Lemma IV.1.07)

= ‖A2x‖ since ‖x‖ = 1

= ‖A(Ax)‖ ≤ ‖A‖‖Ax‖ by Exercise IV.4.1

≤ ‖A‖(‖A‖‖x‖) by Exercise IV.4.1

= ‖A‖2 since ‖x‖ = 1.
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Lemma IV.4.02

Lemma IV.4.02 (continued)

Lemma IV.4.02. If x is a maximal vector of a symmetric operator A on
an inner product space (X ,G) then x is an eigenvector of the operator A2,
belonging to the eigenvalue ‖A‖2.

Proof (continued). But the all inequalities must in fact be equalities.
This means A2x · x = ‖A2x‖‖x‖ so that we have equality in Schwarz’s
Inequality and hence (by Lemma IV.1.07) we have A2x = x1 for some
a ∈ R. So x is an eigenvector of A2 with eigenvalue a where, by the
equalities above, a = a(x · x) = (xa) · x = (A2x) · x = ‖A‖2, as
claimed.
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Lemma IV.4.03

Lemma IV.4.03

Lemma IV.4.03. A symmetric operator A on a finite dimensional inner
product space has an eigenvector belonging to an eigenvalue +‖A‖ on
−‖A‖.

Proof. Let x be a maximal vector of A (which exists since the inner
product space if finite dimensional). Then by Lemma IV.4.02, x is an
eigenvector of A2 with eigenvalue ‖A‖2, so A2x = x‖A‖2 and
(A− ‖A‖2I)x = 0.

Hence (A + ‖A‖I)(A− ‖A‖I)x = 0. So either
(A− ‖A|I) = 0, in which case x is an eigenvector of A with eigenvalue
‖A‖, or (A− ‖A‖I)x is an eigenvector of A with eigenvalue −‖A‖, as
claimed.
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Theorem IV.4.04

Theorem IV.4.04

Lemma IV.4.04. If X is an eigenvector of a self-adjoint linear operator A
on a metric vector space then x · y = 0 implies x · Ay = 0. That is,
A(x⊥) ⊆ x⊥ and so the map y 7→ Ay is an operator on x⊥, called the
operator on x⊥ induced by A.

Proof. Let λ be the eigenvalue corresponding to eigenvector x. Then
x · y = 0 implies λ(x · y) = 0, or (xλ) · y = 0 or (Ax) · y = 0. Therefore
x · ATy = 0 by the definition of AT and, since A is hypothesized to be
symmetric, x · (Ay) = 0, as claimed.
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Theorem IV.4.05

Theorem IV.4.05

Theorem IV.4.05. If A is a symmetric linear operator on a finite
dimensional inner product space X , then X has an orthonormal basis of
eigenvectors of A.

Proof. Let dim(X ) = n. By Lemma IV.4.03 there is some eigenvector x1

of A corresponding to real eigenvalue ±‖A‖. Set b = x1/‖x1‖ so that b is
a unit eigenvector. Since A is symmetric by hypothesis, then it is
self-adjoint by the definition of symmetric. By Lemma IV.4.04 there is a
linear operator A′ : x⊥ → b⊥ defined as A′(x) = Ax. Since A is symmetric
on X then A′ (which is just A restricted to B⊥) is symmetric on b⊥ (with
respect to the inner product restricted to b⊥).

By Lemma IV.4.03 applied
to inner product space b⊥ and linear operator A′ there is an eigenvector
b2 (a unit vector, without loss of generality, since eigenvectors are by
definition nonzero) of A′ corresponding to real eigenvalue ±‖A′‖. Since
b2 ∈ b⊥ then A′b2 = Ab2 and so b2 is also an eigenvector fo A with the
same eigenvalue.
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Theorem IV.4.05

Theorem IV.4.05 (continued)

Theorem IV.4.05. If A is a symmetric linear operator on a finite
dimensional inner product space X , then X has an orthonormal basis of
eigenvectors of A.

Proof (continued). So we have an orthonormal set {b1,b2} of
eigenvectors of A. Let S1 = (span(b1))

⊥ and S2 = (span(b1,b2))
⊥, so

that, by Corollary IV.2.05, dim(S1) = n − 1 and dim(S2) = n − 2. We can
now inductively find eigenvectors b1,b2, . . . ,bn of A with real eigenvalues
λ1, λ2, . . . , λn, respectively (and subspaces S1,S2, . . . ,Sn of X such that
dim(Sk) = n − k), just as we did for b1 and b2. Since {b1,b2, . . . ,bn} is
an orthonormal set of eigenvectors in X where dim(X ) = n, then
{b1,b2, . . . ,bn} is an orthonormal basis of eigenvectors of A for X .
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Corollary IV.4.07

Corollary IV.4.07

Corollary IV.4.07. If A is a symmetric linear operator on a finite
dimensional inner product space with orthonormal basis β and if µ is a
root of multiplicity m of the characteristic equation det([A− λI]ββ) = 0
then the eigenspace belonging to µ has dimension m.

Proof. By Corollary IV.4.06, [A]ββ is a diagonal matrix with diagonal
entries λ1, λ2, . . . , λn (the not-necessarily-distinct eigenvalues of A). Then
by the Fundamental Theorem of Algebra

det([A− λI]ββ) = det([A]ββ − λ[I]ββ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ).

Since µ is a root of the characteristic equation of multiplicity m, then say
λj1λj2 = · · · = λjm = µ. Then the eigenspace of µ is spanned by
bj1 ,bj2 , . . . ,bjm and since these vectors are orthonormal then they are
linearly independent and hence a basis for the eigenspace of µ. So the
dimensional of this eigenspace is m, as claimed.

() Differential Geometry May 17, 2019 9 / 14



Corollary IV.4.07

Corollary IV.4.07

Corollary IV.4.07. If A is a symmetric linear operator on a finite
dimensional inner product space with orthonormal basis β and if µ is a
root of multiplicity m of the characteristic equation det([A− λI]ββ) = 0
then the eigenspace belonging to µ has dimension m.

Proof. By Corollary IV.4.06, [A]ββ is a diagonal matrix with diagonal
entries λ1, λ2, . . . , λn (the not-necessarily-distinct eigenvalues of A). Then
by the Fundamental Theorem of Algebra

det([A− λI]ββ) = det([A]ββ − λ[I]ββ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ).

Since µ is a root of the characteristic equation of multiplicity m, then say
λj1λj2 = · · · = λjm = µ. Then the eigenspace of µ is spanned by
bj1 ,bj2 , . . . ,bjm and since these vectors are orthonormal then they are
linearly independent and hence a basis for the eigenspace of µ. So the
dimensional of this eigenspace is m, as claimed.

() Differential Geometry May 17, 2019 9 / 14



Corollary IV.4.07

Corollary IV.4.07

Corollary IV.4.07. If A is a symmetric linear operator on a finite
dimensional inner product space with orthonormal basis β and if µ is a
root of multiplicity m of the characteristic equation det([A− λI]ββ) = 0
then the eigenspace belonging to µ has dimension m.

Proof. By Corollary IV.4.06, [A]ββ is a diagonal matrix with diagonal
entries λ1, λ2, . . . , λn (the not-necessarily-distinct eigenvalues of A). Then
by the Fundamental Theorem of Algebra

det([A− λI]ββ) = det([A]ββ − λ[I]ββ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ).

Since µ is a root of the characteristic equation of multiplicity m, then say
λj1λj2 = · · · = λjm = µ. Then the eigenspace of µ is spanned by
bj1 ,bj2 , . . . ,bjm and since these vectors are orthonormal then they are
linearly independent and hence a basis for the eigenspace of µ. So the
dimensional of this eigenspace is m, as claimed.

() Differential Geometry May 17, 2019 9 / 14



Corollary IV.4.09

Corollary IV.4.09

Corollary IV.4.09. In an inner product space (X ,G) for any symmetric
bilinear form h on X we can find an orthonormal basis b1,b2, . . . ,bn for X
such that h(bi ,bj) = 0 for i 6= j .

Proof. Let x ∈ X and define hx : X → R as hx(y) = h(x, y) for all y ∈ X
(so hx ∈ X ∗). Next define Ah : X → X as Ah(x) = G↑(hx) for all x ∈ X .
Then we have for all y ∈ X ,

(Ahx) · y = G↑(hx) · y = G(G↑(hx), y)

= hx(y) since G↑(x
∗ where x∗(y) = G(x, y) = x · y for all

y ∈ X ; see Theorem IV.1.09 and Note IV.1.A (here x∗ = hx)

= h(x, y) = h(y, x) since h is symmetric by hypothesis

= y(x) = (Ahy) · x as just established

(with x and y interchanged)

= x · (Ahy) since G (and so dot product) is symmetric because

(X ,G) is an inner product space.
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Corollary IV.4.09

Corollary IV.4.09 (continued)

Corollary IV.4.09. In an inner product space (X ,G) for any symmetric
bilinear form h on X we can find an orthonormal basis b1,b2, . . . ,bn for X
such that h(bi ,bj) = 0 for i 6= j .

Proof (continued). Since (Ahx) · y = x · (Ahy) for all x, y ∈ X then Ah is
self-adjoint and since (X ,G) is an inner product space then, by definition,
Ah is a symmetric linear operator. By Theorem IV.4.05, there is an
orthonormal basis {b1,b2, . . . ,bn} for X of eigenvectors of Ah; say
Ahbi = λibi for each i . Then for this orthonormal basis,

h(bi ,bj) = (Ahbi ) · bj since (Ahx) · y = h(x, y), as established above

= (λibi ) · bj = λi (bi · bj) = 0 if i 6= j ,

as claimed.
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Lemma IV.4.11

Lemma IV.4.11

Lemma IV.4.11. If h is isotropic, then h = λG for some λ ∈ R and
Ah = λI.

Proof. If h is isotropic then there is λ ∈ R (λ is real by Corollary IV.2.08,
since Ah is symmetric as established in the proof of Theorem IV.4.09) such
that Ahx = λx for all x ∈ X . Then Ahx− λx = (Ah − λI)x = 0 for all
x ∈ X ; that is, Ah = λI = 0 (the 0 operator) and Ah = λI, as claimed.

As shown in the proof of Theorem IV.4.09, h(x, y) = (Ahx) · y for all
x, y ∈ X , so h(x, y) = λx) · y = λ(x, y) = λG(x, y) for all x, y ∈ X and
hence h = λG, as claimed.
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Lemma IV.4.13

Lemma IV.4.13

Lemma IV.4.13. If a self-adjoint linear operator A on Lorentz space L4

has a timelike eigenvector v (i.e., v · v > 0), then L4 has an orthonormal
basis of eigenvectors of A.

Proof. Since L4 is a metric vector space and A is self-adjoint, then by
Lemma IV.2.04 the restriction of A to v⊥ is a linear operator on v⊥.

We claim that the metric tensor G on span(x) is non-degenerate. If for
x ∈ span(v) we have G(x, va) = 0 for all va ∈ span(v), or equivalently for
all a ∈ R, implies G(vb, va) = 0 for all a ∈ R where x = vb. So
abG(v, v) = 0 for all a ∈ R. Since v is timelike then G(v, v) = v · v > 0,
so we must have b = 0 and x = vb = 0. That is, G is non-degenerate on
span(v). So by Corollary IV.2.06, G is non-degenerate on v⊥.

With β = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} as an orthonormal
basis of L4 we have k = 1, in the notation of Theorem IV.2.08, since
(1, 0, 0, 0) · (1, 0, 0, 0) = 1, (0, 1, 0, 0) · (0, 1, 0, 0) = −1,
(0, 0, 1, 0) · (0, 0, 1, 0) = −1, and (0, 0, 0, 1) · (0, 0, 0, 1) = −1.
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Lemma IV.4.13

Lemma IV.4.13 (continued)

Lemma IV.4.13. If a self-adjoint linear operator A on Lorentz space L4

has a timelike eigenvector v (i.e., v · v > 0), then L4 has an orthonormal
basis of eigenvectors of A.

Proof. So any orthonormal basis of L4 will have k = 1 by Theorem
IV.3.08; that is, any orthonormal basis of L4 will consist of 1 timelike
vector and 3 spacelike vectors. As shown in the proof of Theorem IV.3.08
(with W = span(v) and N = b⊥ in the notation of the proof) we have that
G is negative definite on v⊥; that is, G is an inner product on v⊥ (this is
the first time we have used a negative definite inner product).

So applying
Theorem IV.4.05 to inner product space (v⊥,G|v⊥) and symmetric linear
operator A|v⊥ (recall that a symmetric operator is a self-adjoint operator
on an inner product space), there are 3 spacelike orthonormal eigenvectors
of A|v⊥ (and so eigenvectors of A since A and A|v⊥ agree on v⊥). So
these 3 spacelike vectors, along with timelike vector v/‖v‖, form an
orthonormal basis of L4 consisting of eigenvectors of A.
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Lemma IV.4.13

Lemma IV.4.13 (continued)

Lemma IV.4.13. If a self-adjoint linear operator A on Lorentz space L4

has a timelike eigenvector v (i.e., v · v > 0), then L4 has an orthonormal
basis of eigenvectors of A.

Proof. So any orthonormal basis of L4 will have k = 1 by Theorem
IV.3.08; that is, any orthonormal basis of L4 will consist of 1 timelike
vector and 3 spacelike vectors. As shown in the proof of Theorem IV.3.08
(with W = span(v) and N = b⊥ in the notation of the proof) we have that
G is negative definite on v⊥; that is, G is an inner product on v⊥ (this is
the first time we have used a negative definite inner product). So applying
Theorem IV.4.05 to inner product space (v⊥,G|v⊥) and symmetric linear
operator A|v⊥ (recall that a symmetric operator is a self-adjoint operator
on an inner product space), there are 3 spacelike orthonormal eigenvectors
of A|v⊥ (and so eigenvectors of A since A and A|v⊥ agree on v⊥). So
these 3 spacelike vectors, along with timelike vector v/‖v‖, form an
orthonormal basis of L4 consisting of eigenvectors of A.
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Lemma IV.4.13

Lemma IV.4.13 (continued)

Lemma IV.4.13. If a self-adjoint linear operator A on Lorentz space L4

has a timelike eigenvector v (i.e., v · v > 0), then L4 has an orthonormal
basis of eigenvectors of A.

Proof. So any orthonormal basis of L4 will have k = 1 by Theorem
IV.3.08; that is, any orthonormal basis of L4 will consist of 1 timelike
vector and 3 spacelike vectors. As shown in the proof of Theorem IV.3.08
(with W = span(v) and N = b⊥ in the notation of the proof) we have that
G is negative definite on v⊥; that is, G is an inner product on v⊥ (this is
the first time we have used a negative definite inner product). So applying
Theorem IV.4.05 to inner product space (v⊥,G|v⊥) and symmetric linear
operator A|v⊥ (recall that a symmetric operator is a self-adjoint operator
on an inner product space), there are 3 spacelike orthonormal eigenvectors
of A|v⊥ (and so eigenvectors of A since A and A|v⊥ agree on v⊥). So
these 3 spacelike vectors, along with timelike vector v/‖v‖, form an
orthonormal basis of L4 consisting of eigenvectors of A.
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