Differential Geometry

Chapter IV. Metric Vector Spaces

IV.4. Diagonalizing Symmetric Operators — Proofs of Theorems

Table of contents

- 1 Lemma IV.4.02
- 2 Lemma IV.4.03
- 3 Theorem IV.4.04
 - Theorem IV.4.05
- 5 Corollary IV.4.07
- 6 Corollary IV.4.09
- 7 Lemma IV.4.11
- 8 Lemma IV.4.13

Lemma IV.4.02. If **x** is a maximal vector of a symmetric operator **A** on an inner product space (X, \mathbf{G}) then **x** is an eigenvector of the operator \mathbf{A}^2 , belonging to the eigenvalue $\|\mathbf{A}\|^2$.

Proof. We have

 $\|\mathbf{A}\|^2 = \|\mathbf{A}\mathbf{x}\|^2$ since \mathbf{x} is a maximal vector

- = $\mathbf{A}\mathbf{x} \cdot \mathbf{A}\mathbf{x} = \mathbf{A}^T \mathbf{A}\mathbf{x} \cdot \mathbf{x}$ by definition of transpose
- = $\mathbf{A}^2 \mathbf{x} \cdot \mathbf{x}$ since \mathbf{A} is symmetric, $\mathbf{A}^T = \mathbf{A}$
- $\leq \|\mathbf{A}^{\mathsf{x}}\mathbf{x}\|\|\mathbf{x}\|$ by Schwarz's Inequality (Lemma IV.1.07)
- $= \|\mathbf{A}^2 \mathbf{x}\|$ since $\|\mathbf{x}\| = 1$
- $= \|\mathbf{A}(\mathbf{A}\mathbf{x})\| \le \|\mathbf{A}\| \|\mathbf{A}\mathbf{x}\| \text{ by Exercise IV.4.1}$
- $\leq ~ \|\textbf{A}\| (\|\textbf{A}\| \| \textbf{x}\|)$ by Exercise IV.4.1
- $= \|\mathbf{A}\|^2$ since $\|\mathbf{x}\| = 1$.

Lemma IV.4.02. If **x** is a maximal vector of a symmetric operator **A** on an inner product space (X, \mathbf{G}) then **x** is an eigenvector of the operator \mathbf{A}^2 , belonging to the eigenvalue $\|\mathbf{A}\|^2$.

Proof. We have

$$\begin{aligned} \mathbf{A} \|^2 &= \|\mathbf{A}\mathbf{x}\|^2 \text{ since } \mathbf{x} \text{ is a maximal vector} \\ &= \mathbf{A}\mathbf{x} \cdot \mathbf{A}\mathbf{x} = \mathbf{A}^T \mathbf{A}\mathbf{x} \cdot \mathbf{x} \text{ by definition of transpose} \\ &= \mathbf{A}^2 \mathbf{x} \cdot \mathbf{x} \text{ since } \mathbf{A} \text{ is symmetric, } \mathbf{A}^T = \mathbf{A} \\ &\leq \|\mathbf{A}^x \mathbf{x}\| \| \mathbf{x} \| \text{ by Schwarz's Inequality (Lemma IV.1.07)} \\ &= \|\mathbf{A}^2 \mathbf{x}\| \text{ since } \| \mathbf{x} \| = 1 \\ &= \|\mathbf{A}(\mathbf{A}\mathbf{x})\| \leq \|\mathbf{A}\| \| \mathbf{A}\mathbf{x} \| \text{ by Exercise IV.4.1} \\ &\leq \|\mathbf{A}\| (\|\mathbf{A}\| \| \mathbf{x} \|) \text{ by Exercise IV.4.1} \end{aligned}$$

$$= \|\mathbf{A}\|^2 \text{ since } \|\mathbf{x}\| = 1.$$

Lemma IV.4.02 (continued)

Lemma IV.4.02. If **x** is a maximal vector of a symmetric operator **A** on an inner product space (X, \mathbf{G}) then **x** is an eigenvector of the operator \mathbf{A}^2 , belonging to the eigenvalue $\|\mathbf{A}\|^2$.

Proof (continued). But the all inequalities must in fact be equalities. This means $\mathbf{A}^2 \mathbf{x} \cdot \mathbf{x} = \|\mathbf{A}^2 \mathbf{x}\| \|\mathbf{x}\|$ so that we have equality in Schwarz's Inequality and hence (by Lemma IV.1.07) we have $\mathbf{A}^2 \mathbf{x} = \mathbf{x}1$ for some $a \in \mathbb{R}$. So \mathbf{x} is an eigenvector of \mathbf{A}^2 with eigenvalue a where, by the equalities above, $a = a(\mathbf{x} \cdot \mathbf{x}) = (\mathbf{x}a) \cdot \mathbf{x} = (\mathbf{A}^2 \mathbf{x}) \cdot \mathbf{x} = \|\mathbf{A}\|^2$, as claimed.

Lemma IV.4.03. A symmetric operator **A** on a finite dimensional inner product space has an eigenvector belonging to an eigenvalue $+||\mathbf{A}||$ on $-||\mathbf{A}||$.

Proof. Let **x** be a maximal vector of **A** (which exists since the inner product space if finite dimensional). Then by Lemma IV.4.02, **x** is an eigenvector of **A**² with eigenvalue $||\mathbf{A}||^2$, so $\mathbf{A}^2\mathbf{x} = \mathbf{x}||\mathbf{A}||^2$ and $(\mathbf{A} - ||\mathbf{A}||^2 \mathbf{I})\mathbf{x} = \mathbf{0}$.

Lemma IV.4.03. A symmetric operator **A** on a finite dimensional inner product space has an eigenvector belonging to an eigenvalue $+||\mathbf{A}||$ on $-||\mathbf{A}||$.

Proof. Let **x** be a maximal vector of **A** (which exists since the inner product space if finite dimensional). Then by Lemma IV.4.02, **x** is an eigenvector of **A**² with eigenvalue $||\mathbf{A}||^2$, so $\mathbf{A}^2\mathbf{x} = \mathbf{x}||\mathbf{A}||^2$ and $(\mathbf{A} - ||\mathbf{A}||^2\mathbf{I})\mathbf{x} = \mathbf{0}$. Hence $(\mathbf{A} + ||\mathbf{A}||\mathbf{I})(\mathbf{A} - ||\mathbf{A}||\mathbf{I})\mathbf{x} = \mathbf{0}$. So either $(\mathbf{A} - ||\mathbf{A}||\mathbf{I}) = \mathbf{0}$, in which case **x** is an eigenvector of **A** with eigenvalue $||\mathbf{A}||$, or $(\mathbf{A} - ||\mathbf{A}||\mathbf{I})\mathbf{x}$ is an eigenvector of **A** with eigenvalue $-||\mathbf{A}||$, as claimed.

Lemma IV.4.03. A symmetric operator **A** on a finite dimensional inner product space has an eigenvector belonging to an eigenvalue $+||\mathbf{A}||$ on $-||\mathbf{A}||$.

Proof. Let **x** be a maximal vector of **A** (which exists since the inner product space if finite dimensional). Then by Lemma IV.4.02, **x** is an eigenvector of **A**² with eigenvalue $||\mathbf{A}||^2$, so $\mathbf{A}^2\mathbf{x} = \mathbf{x}||\mathbf{A}||^2$ and $(\mathbf{A} - ||\mathbf{A}||^2\mathbf{I})\mathbf{x} = \mathbf{0}$. Hence $(\mathbf{A} + ||\mathbf{A}||\mathbf{I})(\mathbf{A} - ||\mathbf{A}||\mathbf{I})\mathbf{x} = \mathbf{0}$. So either $(\mathbf{A} - ||\mathbf{A}||\mathbf{I}) = \mathbf{0}$, in which case **x** is an eigenvector of **A** with eigenvalue $||\mathbf{A}||$, or $(\mathbf{A} - ||\mathbf{A}||\mathbf{I})\mathbf{x}$ is an eigenvector of **A** with eigenvalue $-||\mathbf{A}||$, as claimed.

Lemma IV.4.04. If **X** is an eigenvector of a self-adjoint linear operator **A** on a metric vector space then $\mathbf{x} \cdot \mathbf{y} = 0$ implies $\mathbf{x} \cdot \mathbf{A}\mathbf{y} = 0$. That is, $\mathbf{A}(\mathbf{x}^{\perp}) \subseteq \mathbf{x}^{\perp}$ and so the map $\mathbf{y} \mapsto \mathbf{A}\mathbf{y}$ is an operator on \mathbf{x}^{\perp} , called the operator on \mathbf{x}^{\perp} induced by **A**.

Proof. Let λ be the eigenvalue corresponding to eigenvector **x**. Then $\mathbf{x} \cdot \mathbf{y} = 0$ implies $\lambda(\mathbf{x} \cdot \mathbf{y}) = 0$, or $(\mathbf{x}\lambda) \cdot \mathbf{y} = 0$ or $(\mathbf{A}\mathbf{x}) \cdot \mathbf{y} = 0$. Therefore $\mathbf{x} \cdot \mathbf{A}^T \mathbf{y} = 0$ by the definition of \mathbf{A}^T and, since **A** is hypothesized to be symmetric, $\mathbf{x} \cdot (\mathbf{A}\mathbf{y}) = 0$, as claimed.

Lemma IV.4.04. If **X** is an eigenvector of a self-adjoint linear operator **A** on a metric vector space then $\mathbf{x} \cdot \mathbf{y} = 0$ implies $\mathbf{x} \cdot \mathbf{A}\mathbf{y} = 0$. That is, $\mathbf{A}(\mathbf{x}^{\perp}) \subseteq \mathbf{x}^{\perp}$ and so the map $\mathbf{y} \mapsto \mathbf{A}\mathbf{y}$ is an operator on \mathbf{x}^{\perp} , called the operator on \mathbf{x}^{\perp} induced by **A**.

Proof. Let λ be the eigenvalue corresponding to eigenvector **x**. Then $\mathbf{x} \cdot \mathbf{y} = 0$ implies $\lambda(\mathbf{x} \cdot \mathbf{y}) = 0$, or $(\mathbf{x}\lambda) \cdot \mathbf{y} = 0$ or $(\mathbf{A}\mathbf{x}) \cdot \mathbf{y} = 0$. Therefore $\mathbf{x} \cdot \mathbf{A}^T \mathbf{y} = 0$ by the definition of \mathbf{A}^T and, since **A** is hypothesized to be symmetric, $\mathbf{x} \cdot (\mathbf{A}\mathbf{y}) = 0$, as claimed.

Theorem IV.4.05

Theorem IV.4.05. If **A** is a symmetric linear operator on a finite dimensional inner product space X, then X has an orthonormal basis of eigenvectors of **A**.

Proof. Let dim(X) = n. By Lemma IV.4.03 there is some eigenvector \mathbf{x}_1 of **A** corresponding to real eigenvalue $\pm ||\mathbf{A}||$. Set $\mathbf{b} = \mathbf{x}_1/||\mathbf{x}_1||$ so that **b** is a unit eigenvector. Since **A** is symmetric by hypothesis, then it is self-adjoint by the definition of symmetric. By Lemma IV.4.04 there is a linear operator $\mathbf{A}' : \mathbf{x}^{\perp} \to \mathbf{b}^{\perp}$ defined as $\mathbf{A}'(\mathbf{x}) = \mathbf{A}\mathbf{x}$. Since **A** is symmetric on X then \mathbf{A}' (which is just **A** restricted to \mathbf{B}^{\perp}) is symmetric on \mathbf{b}^{\perp} (with respect to the inner product restricted to \mathbf{b}^{\perp}).

Theorem IV.4.05

Theorem IV.4.05. If **A** is a symmetric linear operator on a finite dimensional inner product space X, then X has an orthonormal basis of eigenvectors of **A**.

Proof. Let dim(X) = n. By Lemma IV.4.03 there is some eigenvector \mathbf{x}_1 of **A** corresponding to real eigenvalue $\pm ||\mathbf{A}||$. Set $\mathbf{b} = \mathbf{x}_1/||\mathbf{x}_1||$ so that **b** is a unit eigenvector. Since **A** is symmetric by hypothesis, then it is self-adjoint by the definition of symmetric. By Lemma IV.4.04 there is a linear operator $\mathbf{A}': \mathbf{x}^{\perp} \to \mathbf{b}^{\perp}$ defined as $\mathbf{A}'(\mathbf{x}) = \mathbf{A}\mathbf{x}$. Since \mathbf{A} is symmetric on X then A' (which is just A restricted to B^{\perp}) is symmetric on b^{\perp} (with respect to the inner product restricted to \mathbf{b}^{\perp}). By Lemma IV.4.03 applied to inner product space \mathbf{b}^{\perp} and linear operator \mathbf{A}' there is an eigenvector \mathbf{b}_2 (a unit vector, without loss of generality, since eigenvectors are by definition nonzero) of **A**' corresponding to real eigenvalue $\pm ||\mathbf{A}'||$. Since $\mathbf{b}_2 \in \mathbf{b}^{\perp}$ then $\mathbf{A}'\mathbf{b}_2 = \mathbf{A}\mathbf{b}_2$ and so \mathbf{b}_2 is also an eigenvector fo \mathbf{A} with the same eigenvalue.

Theorem IV.4.05

Theorem IV.4.05. If **A** is a symmetric linear operator on a finite dimensional inner product space X, then X has an orthonormal basis of eigenvectors of **A**.

Proof. Let dim(X) = n. By Lemma IV.4.03 there is some eigenvector \mathbf{x}_1 of **A** corresponding to real eigenvalue $\pm ||\mathbf{A}||$. Set $\mathbf{b} = \mathbf{x}_1/||\mathbf{x}_1||$ so that **b** is a unit eigenvector. Since **A** is symmetric by hypothesis, then it is self-adjoint by the definition of symmetric. By Lemma IV.4.04 there is a linear operator $\mathbf{A}': \mathbf{x}^{\perp} \to \mathbf{b}^{\perp}$ defined as $\mathbf{A}'(\mathbf{x}) = \mathbf{A}\mathbf{x}$. Since \mathbf{A} is symmetric on X then A' (which is just A restricted to B^{\perp}) is symmetric on b^{\perp} (with respect to the inner product restricted to \mathbf{b}^{\perp}). By Lemma IV.4.03 applied to inner product space \mathbf{b}^{\perp} and linear operator \mathbf{A}' there is an eigenvector \mathbf{b}_2 (a unit vector, without loss of generality, since eigenvectors are by definition nonzero) of \mathbf{A}' corresponding to real eigenvalue $\pm \|\mathbf{A}'\|$. Since $\mathbf{b}_2 \in \mathbf{b}^{\perp}$ then $\mathbf{A}'\mathbf{b}_2 = \mathbf{A}\mathbf{b}_2$ and so \mathbf{b}_2 is also an eigenvector fo \mathbf{A} with the same eigenvalue.

()

Theorem IV.4.05 (continued)

Theorem IV.4.05. If **A** is a symmetric linear operator on a finite dimensional inner product space X, then X has an orthonormal basis of eigenvectors of **A**.

Proof (continued). So we have an orthonormal set $\{\mathbf{b}_1, \mathbf{b}_2\}$ of eigenvectors of **A**. Let $S_1 = (\operatorname{span}(\mathbf{b}_1))^{\perp}$ and $S_2 = (\operatorname{span}(\mathbf{b}_1, \mathbf{b}_2))^{\perp}$, so that, by Corollary IV.2.05, dim $(S_1) = n - 1$ and dim $(S_2) = n - 2$. We can now inductively find eigenvectors $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n$ of **A** with real eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, respectively (and subspaces S_1, S_2, \ldots, S_n of X such that dim $(S_k) = n - k$), just as we did for \mathbf{b}_1 and \mathbf{b}_2 . Since $\{\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n\}$ is an orthonormal set of eigenvectors in X where dim(X) = n, then $\{\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n\}$ is an orthonormal basis of eigenvectors of **A** for X.

Corollary IV.4.07. If **A** is a symmetric linear operator on a finite dimensional inner product space with orthonormal basis β and if μ is a root of multiplicity *m* of the characteristic equation det($[\mathbf{A} - \lambda \mathbf{I}]^{\beta}_{\beta}$) = 0 then the eigenspace belonging to μ has dimension *m*.

Proof. By Corollary IV.4.06, $[\mathbf{A}]^{\beta}_{\beta}$ is a diagonal matrix with diagonal entries $\lambda_1, \lambda_2, \ldots, \lambda_n$ (the not-necessarily-distinct eigenvalues of **A**). Then by the Fundamental Theorem of Algebra

$$\det(\left[\mathbf{A}-\lambda\mathbf{I}\right]_{\beta}^{\beta}) = \det(\left[\mathbf{A}\right]_{\beta}^{\beta}-\lambda\left[\mathbf{I}\right]_{\beta}^{\beta}) = (\lambda_{1}-\lambda)(\lambda_{2}-\lambda)\cdots(\lambda_{n}-\lambda).$$

Corollary IV.4.07. If **A** is a symmetric linear operator on a finite dimensional inner product space with orthonormal basis β and if μ is a root of multiplicity *m* of the characteristic equation det($[\mathbf{A} - \lambda \mathbf{I}]^{\beta}_{\beta}$) = 0 then the eigenspace belonging to μ has dimension *m*.

Proof. By Corollary IV.4.06, $[\mathbf{A}]^{\beta}_{\beta}$ is a diagonal matrix with diagonal entries $\lambda_1, \lambda_2, \ldots, \lambda_n$ (the not-necessarily-distinct eigenvalues of **A**). Then by the Fundamental Theorem of Algebra

$$\det([\mathbf{A} - \lambda \mathbf{I}]_{\beta}^{\beta}) = \det([\mathbf{A}]_{\beta}^{\beta} - \lambda [\mathbf{I}]_{\beta}^{\beta}) = (\lambda_{1} - \lambda)(\lambda_{2} - \lambda) \cdots (\lambda_{n} - \lambda).$$

Since μ is a root of the characteristic equation of multiplicity m, then say $\lambda_{j_1}\lambda_{j_2} = \cdots = \lambda_{j_m} = \mu$. Then the eigenspace of μ is spanned by $\mathbf{b}_{j_1}, \mathbf{b}_{j_2}, \ldots, \mathbf{b}_{j_m}$ and since these vectors are orthonormal then they are linearly independent and hence a basis for the eigenspace of μ . So the dimensional of this eigenspace is m, as claimed.

Corollary IV.4.07. If **A** is a symmetric linear operator on a finite dimensional inner product space with orthonormal basis β and if μ is a root of multiplicity *m* of the characteristic equation det($[\mathbf{A} - \lambda \mathbf{I}]^{\beta}_{\beta}$) = 0 then the eigenspace belonging to μ has dimension *m*.

Proof. By Corollary IV.4.06, $[\mathbf{A}]^{\beta}_{\beta}$ is a diagonal matrix with diagonal entries $\lambda_1, \lambda_2, \ldots, \lambda_n$ (the not-necessarily-distinct eigenvalues of **A**). Then by the Fundamental Theorem of Algebra

$$\det([\mathbf{A} - \lambda \mathbf{I}]^{\beta}_{\beta}) = \det([\mathbf{A}]^{\beta}_{\beta} - \lambda [\mathbf{I}]^{\beta}_{\beta}) = (\lambda_1 - \lambda)(\lambda_2 - \lambda)\cdots(\lambda_n - \lambda).$$

Since μ is a root of the characteristic equation of multiplicity *m*, then say $\lambda_{j_1}\lambda_{j_2} = \cdots = \lambda_{j_m} = \mu$. Then the eigenspace of μ is spanned by $\mathbf{b}_{j_1}, \mathbf{b}_{j_2}, \ldots, \mathbf{b}_{j_m}$ and since these vectors are orthonormal then they are linearly independent and hence a basis for the eigenspace of μ . So the dimensional of this eigenspace is *m*, as claimed.

Corollary IV.4.09. In an inner product space (X, \mathbf{G}) for any symmetric bilinear form \mathbf{h} on X we can find an orthonormal basis $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ for X such that $\mathbf{h}(\mathbf{b}_i, \mathbf{b}_j) = 0$ for $i \neq j$.

Proof. Let $\mathbf{x} \in X$ and define $\mathbf{h}_{\mathbf{x}} : X \to \mathbb{R}$ as $\mathbf{h}_{\mathbf{x}}(\mathbf{y}) = \mathbf{h}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{y} \in X$ (so $\mathbf{h}_{\mathbf{x}} \in X^*$). Next define $\mathbf{A}_{\mathbf{h}} : X \to X$ as $\mathbf{A}_{\mathbf{h}}(\mathbf{x}) = \mathbf{G}_{\uparrow}(\mathbf{h}_{\mathbf{x}})$ for all $\mathbf{x} \in X$. Then we have for all $\mathbf{y} \in X$,

$$\begin{aligned} (\mathbf{A_hx}) \cdot \mathbf{y} &= \mathbf{G}_{\uparrow}(\mathbf{h_x}) \cdot \mathbf{y} = \mathbf{G}(\mathbf{G}_{\uparrow}(\mathbf{h_x}), \mathbf{y}) \\ &= \mathbf{h_x}(\mathbf{y}) \text{ since } \mathbf{G}_{\uparrow}(\mathbf{x}^* \text{ where } \mathbf{x}^*(\mathbf{y}) = \mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} \text{ for all} \\ &\mathbf{y} \in X; \text{ see Theorem IV.1.09 and Note IV.1.A (here } \mathbf{x}^* = \mathbf{h_x}) \\ &= \mathbf{h}(\mathbf{x}, \mathbf{y}) = \mathbf{h}(\mathbf{y}, \mathbf{x}) \text{ since } \mathbf{h} \text{ is symmetric by hypothesis} \\ &= \mathbf{y}(\mathbf{x}) = (\mathbf{A_hy}) \cdot \mathbf{x} \text{ as just established} \\ & (\text{with } \mathbf{x} \text{ and } \mathbf{y} \text{ interchanged}) \\ &= \mathbf{x} \cdot (\mathbf{A_hy}) \text{ since } \mathbf{G} \text{ (and so dot product) is symmetric because} \\ & (X, \mathbf{G}) \text{ is an inner product space.} \end{aligned}$$

Corollary IV.4.09. In an inner product space (X, \mathbf{G}) for any symmetric bilinear form \mathbf{h} on X we can find an orthonormal basis $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ for X such that $\mathbf{h}(\mathbf{b}_i, \mathbf{b}_j) = 0$ for $i \neq j$.

Proof. Let $\mathbf{x} \in X$ and define $\mathbf{h}_{\mathbf{x}} : X \to \mathbb{R}$ as $\mathbf{h}_{\mathbf{x}}(\mathbf{y}) = \mathbf{h}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{y} \in X$ (so $\mathbf{h}_{\mathbf{x}} \in X^*$). Next define $\mathbf{A}_{\mathbf{h}} : X \to X$ as $\mathbf{A}_{\mathbf{h}}(\mathbf{x}) = \mathbf{G}_{\uparrow}(\mathbf{h}_{\mathbf{x}})$ for all $\mathbf{x} \in X$. Then we have for all $\mathbf{y} \in X$,

$$\begin{array}{lll} (\mathbf{A_hx}) \cdot \mathbf{y} &=& \mathbf{G}_{\uparrow}(\mathbf{h_x}) \cdot \mathbf{y} = \mathbf{G}(\mathbf{G}_{\uparrow}(\mathbf{h_x}), \mathbf{y}) \\ &=& \mathbf{h_x}(\mathbf{y}) \text{ since } \mathbf{G}_{\uparrow}(\mathbf{x^*} \text{ where } \mathbf{x^*}(\mathbf{y}) = \mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} \text{ for all} \\ && \mathbf{y} \in X; \text{ see Theorem IV.1.09 and Note IV.1.A (here } \mathbf{x^*} = \mathbf{h_x}) \\ &=& \mathbf{h}(\mathbf{x}, \mathbf{y}) = \mathbf{h}(\mathbf{y}, \mathbf{x}) \text{ since } \mathbf{h} \text{ is symmetric by hypothesis} \\ &=& \mathbf{y}(\mathbf{x}) = (\mathbf{A_hy}) \cdot \mathbf{x} \text{ as just established} \\ && (\text{with } \mathbf{x} \text{ and } \mathbf{y} \text{ interchanged}) \\ &=& \mathbf{x} \cdot (\mathbf{A_hy}) \text{ since } \mathbf{G} \text{ (and so dot product) is symmetric because} \\ && (X, \mathbf{G}) \text{ is an inner product space.} \end{array}$$

Corollary IV.4.09 (continued)

Corollary IV.4.09. In an inner product space (X, \mathbf{G}) for any symmetric bilinear form \mathbf{h} on X we can find an orthonormal basis $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ for X such that $\mathbf{h}(\mathbf{b}_i, \mathbf{b}_j) = 0$ for $i \neq j$.

Proof (continued). Since $(\mathbf{A}_{h}\mathbf{x}) \cdot \mathbf{y} = \mathbf{x} \cdot (\mathbf{A}_{h}\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in X$ then \mathbf{A}_{h} is self-adjoint and since (X, \mathbf{G}) is an inner product space then, by definition, \mathbf{A}_{h} is a symmetric linear operator. By Theorem IV.4.05, there is an orthonormal basis $\{\mathbf{b}_{1}, \mathbf{b}_{2}, \dots, \mathbf{b}_{n}\}$ for X of eigenvectors of \mathbf{A}_{h} ; say $\mathbf{A}_{h}\mathbf{b}_{i} = \lambda_{i}\mathbf{b}_{i}$ for each *i*. Then for this orthonormal basis,

$$\begin{split} \mathbf{h}(\mathbf{b}_i,\mathbf{b}_j) &= (\mathbf{A}_{\mathbf{h}}\mathbf{b}_i) \cdot \mathbf{b}_j \text{ since } (\mathbf{A}_{\mathbf{h}}\mathbf{x}) \cdot \mathbf{y} = \mathbf{h}(\mathbf{x},\mathbf{y}), \text{ as established above} \\ &= (\lambda_i \mathbf{b}_i) \cdot \mathbf{b}_j = \lambda_i (\mathbf{b}_i \cdot \mathbf{b}_j) = 0 \text{ if } i \neq j, \end{split}$$

as claimed.

Lemma IV.4.11. If **h** is isotropic, then $\mathbf{h} = \lambda \mathbf{G}$ for some $\lambda \in \mathbb{R}$ and $\mathbf{A_h} = \lambda \mathbf{I}$.

Proof. If **h** is isotropic then there is $\lambda \in \mathbb{R}$ (λ is real by Corollary IV.2.08, since $\mathbf{A_h}$ is symmetric as established in the proof of Theorem IV.4.09) such that $\mathbf{A_hx} = \lambda \mathbf{x}$ for all $\mathbf{x} \in X$. Then $\mathbf{A_hx} - \lambda \mathbf{x} = (\mathbf{A_h} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ for all $\mathbf{x} \in X$; that is, $\mathbf{A_h} = \lambda \mathbf{I} = \mathbf{0}$ (the **0** operator) and $\mathbf{A_h} = \lambda \mathbf{I}$, as claimed.

Lemma IV.4.11. If **h** is isotropic, then $\mathbf{h} = \lambda \mathbf{G}$ for some $\lambda \in \mathbb{R}$ and $\mathbf{A}_{\mathbf{h}} = \lambda \mathbf{I}$.

Proof. If **h** is isotropic then there is $\lambda \in \mathbb{R}$ (λ is real by Corollary IV.2.08, since $\mathbf{A}_{\mathbf{h}}$ is symmetric as established in the proof of Theorem IV.4.09) such that $\mathbf{A}_{\mathbf{h}}\mathbf{x} = \lambda \mathbf{x}$ for all $\mathbf{x} \in X$. Then $\mathbf{A}_{\mathbf{h}}\mathbf{x} - \lambda \mathbf{x} = (\mathbf{A}_{\mathbf{h}} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ for all $\mathbf{x} \in X$; that is, $\mathbf{A}_{\mathbf{h}} = \lambda \mathbf{I} = \mathbf{0}$ (the **0** operator) and $\mathbf{A}_{\mathbf{h}} = \lambda \mathbf{I}$, as claimed.

As shown in the proof of Theorem IV.4.09, $\mathbf{h}(\mathbf{x}, \mathbf{y}) = (\mathbf{A}_{\mathbf{h}}\mathbf{x}) \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in X$, so $\mathbf{h}(\mathbf{x}, \mathbf{y}) = \lambda \mathbf{x}) \cdot \mathbf{y} = \lambda(\mathbf{x}, \mathbf{y}) = \lambda \mathbf{G}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in X$ and hence $\mathbf{h} = \lambda \mathbf{G}$, as claimed.

Lemma IV.4.11. If **h** is isotropic, then $\mathbf{h} = \lambda \mathbf{G}$ for some $\lambda \in \mathbb{R}$ and $\mathbf{A}_{\mathbf{h}} = \lambda \mathbf{I}$.

Proof. If **h** is isotropic then there is $\lambda \in \mathbb{R}$ (λ is real by Corollary IV.2.08, since $\mathbf{A}_{\mathbf{h}}$ is symmetric as established in the proof of Theorem IV.4.09) such that $\mathbf{A}_{\mathbf{h}}\mathbf{x} = \lambda \mathbf{x}$ for all $\mathbf{x} \in X$. Then $\mathbf{A}_{\mathbf{h}}\mathbf{x} - \lambda \mathbf{x} = (\mathbf{A}_{\mathbf{h}} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ for all $\mathbf{x} \in X$; that is, $\mathbf{A}_{\mathbf{h}} = \lambda \mathbf{I} = \mathbf{0}$ (the **0** operator) and $\mathbf{A}_{\mathbf{h}} = \lambda \mathbf{I}$, as claimed.

As shown in the proof of Theorem IV.4.09, $\mathbf{h}(\mathbf{x}, \mathbf{y}) = (\mathbf{A}_{\mathbf{h}}\mathbf{x}) \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in X$, so $\mathbf{h}(\mathbf{x}, \mathbf{y}) = \lambda \mathbf{x}) \cdot \mathbf{y} = \lambda(\mathbf{x}, \mathbf{y}) = \lambda \mathbf{G}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in X$ and hence $\mathbf{h} = \lambda \mathbf{G}$, as claimed.

Lemma IV.4.13. If a self-adjoint linear operator **A** on Lorentz space \mathbb{L}^4 has a timelike eigenvector **v** (i.e., $\mathbf{v} \cdot \mathbf{v} > 0$), then \mathbb{L}^4 has an orthonormal basis of eigenvectors of **A**.

Proof. Since \mathbb{L}^4 is a metric vector space and **A** is self-adjoint, then by Lemma IV.2.04 the restriction of **A** to \mathbf{v}^{\perp} is a linear operator on \mathbf{v}^{\perp} .

Lemma IV.4.13. If a self-adjoint linear operator **A** on Lorentz space \mathbb{L}^4 has a timelike eigenvector **v** (i.e., $\mathbf{v} \cdot \mathbf{v} > 0$), then \mathbb{L}^4 has an orthonormal basis of eigenvectors of **A**.

Proof. Since \mathbb{L}^4 is a metric vector space and **A** is self-adjoint, then by Lemma IV.2.04 the restriction of **A** to \mathbf{v}^{\perp} is a linear operator on \mathbf{v}^{\perp} .

We claim that the metric tensor **G** on span(**x**) is non-degenerate. If for $\mathbf{x} \in \text{span}(\mathbf{v})$ we have $\mathbf{G}(\mathbf{x}, \mathbf{v}a) = 0$ for all $\mathbf{v}a \in \text{span}(\mathbf{v})$, or equivalently for all $a \in \mathbb{R}$, implies $\mathbf{G}(\mathbf{v}b, \mathbf{v}a) = 0$ for all $a \in \mathbb{R}$ where $\mathbf{x} = \mathbf{v}b$. So $ab\mathbf{G}(\mathbf{v}, \mathbf{v}) = 0$ for all $a \in \mathbb{R}$. Since **v** is timelike then $\mathbf{G}(\mathbf{v}, \mathbf{v}) = \mathbf{v} \cdot \mathbf{v} > 0$, so we must have b = 0 and $\mathbf{x} = \mathbf{v}b = \mathbf{0}$. That is, **G** is non-degenerate on span(**v**). So by Corollary IV.2.06, **G** is non-degenerate on \mathbf{v}^{\perp} .

Lemma IV.4.13. If a self-adjoint linear operator **A** on Lorentz space \mathbb{L}^4 has a timelike eigenvector **v** (i.e., $\mathbf{v} \cdot \mathbf{v} > 0$), then \mathbb{L}^4 has an orthonormal basis of eigenvectors of **A**.

Proof. Since \mathbb{L}^4 is a metric vector space and **A** is self-adjoint, then by Lemma IV.2.04 the restriction of **A** to \mathbf{v}^{\perp} is a linear operator on \mathbf{v}^{\perp} .

We claim that the metric tensor **G** on span(**x**) is non-degenerate. If for $\mathbf{x} \in \text{span}(\mathbf{v})$ we have $\mathbf{G}(\mathbf{x}, \mathbf{v}a) = 0$ for all $\mathbf{v}a \in \text{span}(\mathbf{v})$, or equivalently for all $a \in \mathbb{R}$, implies $\mathbf{G}(\mathbf{v}b, \mathbf{v}a) = 0$ for all $a \in \mathbb{R}$ where $\mathbf{x} = \mathbf{v}b$. So $ab\mathbf{G}(\mathbf{v}, \mathbf{v}) = 0$ for all $a \in \mathbb{R}$. Since **v** is timelike then $\mathbf{G}(\mathbf{v}, \mathbf{v}) = \mathbf{v} \cdot \mathbf{v} > 0$, so we must have b = 0 and $\mathbf{x} = \mathbf{v}b = \mathbf{0}$. That is, **G** is non-degenerate on span(**v**). So by Corollary IV.2.06, **G** is non-degenerate on \mathbf{v}^{\perp} .

With $\beta = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}$ as an orthonormal basis of \mathbb{L}^4 we have k = 1, in the notation of Theorem IV.2.08, since $(1,0,0,0) \cdot (1,0,0,0) = 1$, $(0,1,0,0) \cdot (0,1,0,0) = -1$, $(0,0,1,0) \cdot (0,0,1,0) = -1$, and $(0,0,0,1) \cdot (0,0,0,1) = -1$.

Lemma IV.4.13. If a self-adjoint linear operator **A** on Lorentz space \mathbb{L}^4 has a timelike eigenvector **v** (i.e., $\mathbf{v} \cdot \mathbf{v} > 0$), then \mathbb{L}^4 has an orthonormal basis of eigenvectors of **A**.

Proof. Since \mathbb{L}^4 is a metric vector space and **A** is self-adjoint, then by Lemma IV.2.04 the restriction of **A** to \mathbf{v}^{\perp} is a linear operator on \mathbf{v}^{\perp} .

We claim that the metric tensor **G** on span(**x**) is non-degenerate. If for $\mathbf{x} \in \text{span}(\mathbf{v})$ we have $\mathbf{G}(\mathbf{x}, \mathbf{v}a) = 0$ for all $\mathbf{v}a \in \text{span}(\mathbf{v})$, or equivalently for all $a \in \mathbb{R}$, implies $\mathbf{G}(\mathbf{v}b, \mathbf{v}a) = 0$ for all $a \in \mathbb{R}$ where $\mathbf{x} = \mathbf{v}b$. So $ab\mathbf{G}(\mathbf{v}, \mathbf{v}) = 0$ for all $a \in \mathbb{R}$. Since **v** is timelike then $\mathbf{G}(\mathbf{v}, \mathbf{v}) = \mathbf{v} \cdot \mathbf{v} > 0$, so we must have b = 0 and $\mathbf{x} = \mathbf{v}b = \mathbf{0}$. That is, **G** is non-degenerate on span(**v**). So by Corollary IV.2.06, **G** is non-degenerate on \mathbf{v}^{\perp} .

With $\beta = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}$ as an orthonormal basis of \mathbb{L}^4 we have k = 1, in the notation of Theorem IV.2.08, since $(1,0,0,0) \cdot (1,0,0,0) = 1$, $(0,1,0,0) \cdot (0,1,0,0) = -1$, $(0,0,1,0) \cdot (0,0,1,0) = -1$, and $(0,0,0,1) \cdot (0,0,0,1) = -1$.

Lemma IV.4.13 (continued)

Lemma IV.4.13. If a self-adjoint linear operator **A** on Lorentz space \mathbb{L}^4 has a timelike eigenvector **v** (i.e., $\mathbf{v} \cdot \mathbf{v} > 0$), then \mathbb{L}^4 has an orthonormal basis of eigenvectors of **A**.

Proof. So any orthonormal basis of \mathbb{L}^4 will have k = 1 by Theorem IV.3.08; that is, any orthonormal basis of \mathbb{L}^4 will consist of 1 timelike vector and 3 spacelike vectors. As shown in the proof of Theorem IV.3.08 (with $W = \text{span}(\mathbf{v})$ and $N = \mathbf{b}^{\perp}$ in the notation of the proof) we have that **G** is negative definite on \mathbf{v}^{\perp} ; that is, **G** is an inner product on \mathbf{v}^{\perp} (this is the first time we have used a negative definite inner product).

Lemma IV.4.13 (continued)

Lemma IV.4.13. If a self-adjoint linear operator **A** on Lorentz space \mathbb{L}^4 has a timelike eigenvector **v** (i.e., $\mathbf{v} \cdot \mathbf{v} > 0$), then \mathbb{L}^4 has an orthonormal basis of eigenvectors of **A**.

Proof. So any orthonormal basis of \mathbb{L}^4 will have k = 1 by Theorem IV.3.08; that is, any orthonormal basis of \mathbb{L}^4 will consist of 1 timelike vector and 3 spacelike vectors. As shown in the proof of Theorem IV.3.08 (with $W = \text{span}(\mathbf{v})$ and $N = \mathbf{b}^{\perp}$ in the notation of the proof) we have that **G** is negative definite on \mathbf{v}^{\perp} ; that is, **G** is an inner product on \mathbf{v}^{\perp} (this is the first time we have used a negative definite inner product). So applying Theorem IV.4.05 to inner product space $(\mathbf{v}^{\perp}, \mathbf{G}|_{\mathbf{v}^{\perp}})$ and symmetric linear operator $A|_{v^{\perp}}$ (recall that a symmetric operator is a self-adjoint operator on an inner product space), there are 3 spacelike orthonormal eigenvectors of $\mathbf{A}|_{\mathbf{v}^{\perp}}$ (and so eigenvectors of \mathbf{A} since \mathbf{A} and $\mathbf{A}|_{\mathbf{v}^{\perp}}$ agree on \mathbf{v}^{\perp}). So these 3 spacelike vectors, along with timelike vector $\mathbf{v}/\|\mathbf{v}\|$, form an orthonormal basis of \mathbb{L}^4 consisting of eigenvectors of **A**.

Lemma IV.4.13 (continued)

Lemma IV.4.13. If a self-adjoint linear operator **A** on Lorentz space \mathbb{L}^4 has a timelike eigenvector **v** (i.e., $\mathbf{v} \cdot \mathbf{v} > 0$), then \mathbb{L}^4 has an orthonormal basis of eigenvectors of **A**.

Proof. So any orthonormal basis of \mathbb{L}^4 will have k = 1 by Theorem IV.3.08; that is, any orthonormal basis of \mathbb{L}^4 will consist of 1 timelike vector and 3 spacelike vectors. As shown in the proof of Theorem IV.3.08 (with $W = \text{span}(\mathbf{v})$ and $N = \mathbf{b}^{\perp}$ in the notation of the proof) we have that **G** is negative definite on \mathbf{v}^{\perp} ; that is, **G** is an inner product on \mathbf{v}^{\perp} (this is the first time we have used a negative definite inner product). So applying Theorem IV.4.05 to inner product space $(\mathbf{v}^{\perp}, \mathbf{G}|_{\mathbf{v}^{\perp}})$ and symmetric linear operator $\mathbf{A}|_{\mathbf{v}^{\perp}}$ (recall that a symmetric operator is a self-adjoint operator on an inner product space), there are 3 spacelike orthonormal eigenvectors of $\mathbf{A}|_{\mathbf{v}^{\perp}}$ (and so eigenvectors of \mathbf{A} since \mathbf{A} and $\mathbf{A}|_{\mathbf{v}^{\perp}}$ agree on \mathbf{v}^{\perp}). So these 3 spacelike vectors, along with timelike vector $\mathbf{v}/||\mathbf{v}||$, form an orthonormal basis of \mathbb{L}^4 consisting of eigenvectors of **A**.