Differential Geometry

Chapter V. Tensors and Multilinear Forms V.1. Multilinear Forms—Proofs of Theorems

Table of contents

(1) Lemma V.1.05
(2) Lemma V.1.07
(3) Lemma V.1.08
(4) Lemma V.1.B

Lemma V.1.05

Lemma V.1.05. A tensor product of finite dimensional vector spaces $X_{1}, X_{2}, \ldots, X_{n}$ always exists and any two are isomorphic "in a natural way."

Proof. We have already argued in this section that a tensor product of spaces $X_{1}^{*}, X_{2}^{*}, \ldots, X_{n}^{*}$ is given by $L\left(X_{1}, X_{2}, \ldots, X_{n} ; \mathbb{R}\right)$. By Note III.1.B, $X_{i} \cong\left(X_{i}^{*}\right)^{*}$ "naturally," so a tensor product of $X_{1}, X_{2}, \ldots, X_{n}$ is given by $L\left(X_{1}^{*}, X_{2}^{*}, \ldots, X_{n}^{*} ; \mathbb{R}\right)$, establishing existence.

Lemma V.1.05

Lemma V.1.05. A tensor product of finite dimensional vector spaces $X_{1}, X_{2}, \ldots, X_{n}$ always exists and any two are isomorphic "in a natural way." Proof. We have already argued in this section that a tensor product of spaces $X_{1}^{*}, X_{2}^{*}, \ldots, X_{n}^{*}$ is given by $L\left(X_{1}, X_{2}, \ldots, X_{n} ; \mathbb{R}\right)$. By Note III.1.B, $X_{i} \cong\left(X_{i}^{*}\right)^{*}$ "naturally," so a tensor product of $X_{1}, X_{2}, \ldots, X_{n}$ is given by $L\left(X_{1}^{*}, X_{2}^{*}, \ldots, X_{n}^{*} ; \mathbb{R}\right)$, establishing existence.

For the isomorphism claim, suppose X and X^{\prime} are tensor products with maps \otimes and \bigotimes^{\prime}, with properties (T i) and (T ii). Then by (T i), Q : $X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow X$ is multilinear and by (T ii) with $\mathbf{f}=囚$ and $Y=X$ there is a unique linear $\hat{\mathbf{f}}=\boldsymbol{\Psi}: X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow X$ such that $\bigotimes=\boldsymbol{\Psi} \circ \bigotimes^{\prime}$

Lemma V.1.05

Lemma V.1.05. A tensor product of finite dimensional vector spaces $X_{1}, X_{2}, \ldots, X_{n}$ always exists and any two are isomorphic "in a natural way."

Proof. We have already argued in this section that a tensor product of spaces $X_{1}^{*}, X_{2}^{*}, \ldots, X_{n}^{*}$ is given by $L\left(X_{1}, X_{2}, \ldots, X_{n} ; \mathbb{R}\right)$. By Note III.1.B, $X_{i} \cong\left(X_{i}^{*}\right)^{*}$ "naturally," so a tensor product of $X_{1}, X_{2}, \ldots, X_{n}$ is given by $L\left(X_{1}^{*}, X_{2}^{*}, \ldots, X_{n}^{*} ; \mathbb{R}\right)$, establishing existence.

For the isomorphism claim, suppose X and X^{\prime} are tensor products with maps \otimes and \otimes^{\prime}, with properties (T i) and (T ii). Then by (T i), $\otimes: X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow X$ is multilinear and by (T ii) with $\mathbf{f}=\otimes$ and $Y=X$ there is a unique linear $\hat{\mathbf{f}}=\boldsymbol{\Psi}: X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow X$ such that $\otimes=\boldsymbol{\Psi} \circ \bigotimes^{\prime}$.
multilinear and by (T ii) with $f=\bigotimes^{\prime}$ and $Y=X^{\prime}$ there is a unique linear $\hat{\mathbf{f}}=\Phi: X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow X^{\prime}$ such that $\otimes^{\prime}=\Phi \circ \otimes$. Hence $\Psi \circ \Phi \circ \otimes=\Psi \circ \otimes^{\prime}=\otimes=\mathbf{I}_{X} \circ \otimes$

Lemma V.1.05

Lemma V.1.05. A tensor product of finite dimensional vector spaces $X_{1}, X_{2}, \ldots, X_{n}$ always exists and any two are isomorphic "in a natural way."

Proof. We have already argued in this section that a tensor product of spaces $X_{1}^{*}, X_{2}^{*}, \ldots, X_{n}^{*}$ is given by $L\left(X_{1}, X_{2}, \ldots, X_{n} ; \mathbb{R}\right)$. By Note III.1.B, $X_{i} \cong\left(X_{i}^{*}\right)^{*}$ "naturally," so a tensor product of $X_{1}, X_{2}, \ldots, X_{n}$ is given by $L\left(X_{1}^{*}, X_{2}^{*}, \ldots, X_{n}^{*} ; \mathbb{R}\right)$, establishing existence.

For the isomorphism claim, suppose X and X^{\prime} are tensor products with maps \otimes and \otimes^{\prime}, with properties (T i) and (T ii). Then by (T i), $\otimes: X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow X$ is multilinear and by (T ii) with $\mathbf{f}=\otimes$ and $Y=X$ there is a unique linear $\hat{\mathbf{f}}=\boldsymbol{\Psi}: X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow X$ such that $\otimes=\boldsymbol{\Psi} \circ \bigotimes^{\prime}$. Similarly, by $(\mathrm{T} \mathrm{i}), \bigotimes^{\prime}: X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow X^{\prime}$ is multilinear and by (T ii) with $\mathbf{f}=\bigotimes^{\prime}$ and $Y=X^{\prime}$ there is a unique linear $\hat{\mathbf{f}}=\boldsymbol{\Phi}: X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow X^{\prime}$ such that $\bigotimes^{\prime}=\boldsymbol{\Phi} \circ \otimes$. Hence $\boldsymbol{\Psi} \circ \boldsymbol{\Phi} \circ \otimes=\boldsymbol{\Psi} \circ \bigotimes^{\prime}=\otimes=\mathbf{I}_{X} \circ \otimes$.

Lemma V.1.05 (continued)

Lemma V.1.05. A tensor product of finite dimensional vector spaces $X_{1}, X_{2}, \ldots, X_{n}$ always exists and any two are isomorphic "in a natural way."

Proof (continued). One more time, by (Ti) $\otimes=\mathbf{I}_{X} \circ \otimes$ is multilinear and by (T ii) with $\mathbf{f}=\bigotimes$ and $Y=X$ there is a unique linear function $\hat{\mathbf{f}}$ mapping $X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow X$ such that $\otimes=\hat{\mathbf{f}} \circ \bigotimes$. But as shown above we could take $\hat{\mathbf{f}}=\mathbf{I}_{x}$ or $\hat{\mathbf{f}}=\boldsymbol{\Psi} \circ \boldsymbol{\Psi}$, so we must have $\boldsymbol{\Psi} \circ \boldsymbol{\Psi}=\mathbf{I}_{X}$. Similarly (interchanging the roles of X and X^{\prime} and of \otimes and \otimes^{\prime} (and by the uniqueness of ($\mathbf{T} \mathbf{i i})$) we have $\boldsymbol{\Psi} \circ \boldsymbol{\Psi}=\mathbf{I}_{X^{\prime}}$. So $\boldsymbol{\Psi}$ and $\boldsymbol{\Psi}$ are inverses of each other and so are one to one and onto. So $\boldsymbol{\Psi}$ and $\boldsymbol{\Psi}$ are linear one to one and onto mappings between vector space X and X^{\prime}. That is, Ψ and $\boldsymbol{\Psi}$ are vector space isomorphisms and $X \cong X^{\prime}$ so that any two tensor products of $X_{1}, X_{2}, \ldots, X_{n}$ are isomorphic, as claimed.

Lemma V.1.05 (continued)

Lemma V.1.05. A tensor product of finite dimensional vector spaces $X_{1}, X_{2}, \ldots, X_{n}$ always exists and any two are isomorphic "in a natural way."

Proof (continued). One more time, by $(T i) \otimes=\mathbf{I}_{X} \circ \otimes$ is multilinear and by (T ii) with $\mathbf{f}=\bigotimes$ and $Y=X$ there is a unique linear function $\hat{\mathbf{f}}$ mapping $X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow X$ such that $\otimes=\hat{\mathbf{f}} \circ 囚$. But as shown above we could take $\hat{\mathbf{f}}=\mathbf{I}_{X}$ or $\hat{\mathbf{f}}=\boldsymbol{\Psi} \circ \boldsymbol{\Psi}$, so we must have $\boldsymbol{\Psi} \circ \boldsymbol{\Psi}=\mathbf{I}_{X}$. Similarly (interchanging the roles of X and X^{\prime} and of \otimes and \bigotimes^{\prime} (and by the uniqueness of ($\mathbf{T} \mathbf{i i}$) we have $\boldsymbol{\Psi} \circ \boldsymbol{\Psi}=\mathbf{I}_{X^{\prime}}$. So $\boldsymbol{\Psi}$ and $\boldsymbol{\Psi}$ are inverses of each other and so are one to one and onto. So $\boldsymbol{\Psi}$ and $\boldsymbol{\Psi}$ are linear one to one and onto mappings between vector space X and X^{\prime}. That is, $\boldsymbol{\Psi}$ and $\boldsymbol{\Psi}$ are vector space isomorphisms and $X \cong X^{\prime}$ so that any two tensor products of $X_{1}, X_{2}, \ldots, X_{n}$ are isomorphic, as claimed.

Lemma V.1.07

Lemma.1.07. There is a "natural" isomorphism yielding $X_{1}^{*} \otimes X_{2}^{*} \otimes \cdots \otimes X_{n}^{*} \cong\left(X_{1} \otimes X_{2} \otimes \cdots \otimes X_{n}\right)^{*}$.

Proof. Define

$\boldsymbol{\Phi}:\left(X_{1} \otimes X_{2} \otimes \cdots \otimes_{n}\right)^{*} \rightarrow L\left(X_{1}, X_{2}, \ldots, X_{n} ; \mathbb{R}\right)=X_{1}^{*} \otimes X_{2}^{*} \otimes \cdots \otimes X_{n}^{*}$
as $\Phi(\mathbf{f})=\mathrm{f} \circ \otimes$ where $\otimes: X_{1}^{*} \times X_{2}^{*} \times \cdots \times X_{n}^{*} \rightarrow L\left(X_{1}, X_{2}, \ldots, X_{n} ; \mathbb{R}\right)$ is
defined (as above) as $\otimes\left(\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right)=g_{1} \otimes g_{2} \otimes \cdots \otimes g_{n}$, and
define $\boldsymbol{\Psi}: L\left(X_{1}, X_{2}, \ldots, X_{n} ; \mathbb{R}\right) \rightarrow\left(X_{1} \otimes X_{2} \otimes \cdots \otimes X_{n}\right)^{*}$ as $\boldsymbol{\Psi}(\mathbf{g})=\hat{\mathrm{g}}$ where $\hat{\mathbf{g}}$ is the unique function such that $\mathbf{g}=\hat{\mathbf{g}} \circ \otimes$ given in (T ii).

Lemma V.1.07

Lemma.1.07. There is a "natural" isomorphism yielding $X_{1}^{*} \otimes X_{2}^{*} \otimes \cdots \otimes X_{n}^{*} \cong\left(X_{1} \otimes X_{2} \otimes \cdots \otimes X_{n}\right)^{*}$.

Proof. Define

$$
\boldsymbol{\Phi}:\left(X_{1} \otimes X_{2} \otimes \cdots \otimes_{n}\right)^{*} \rightarrow L\left(X_{1}, X_{2}, \ldots, X_{n} ; \mathbb{R}\right)=X_{1}^{*} \otimes X_{2}^{*} \otimes \cdots \otimes X_{n}^{*}
$$

as $\boldsymbol{\Phi}(\mathbf{f})=\mathbf{f} \circ \otimes$ where $\otimes: X_{1}^{*} \times X_{2}^{*} \times \cdots \times X_{n}^{*} \rightarrow L\left(X_{1}, X_{2}, \ldots, X_{n} ; \mathbb{R}\right)$ is defined (as above) as $\otimes\left(\left(\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{n}\right)\right)=\mathbf{g}_{1} \otimes \mathbf{g}_{2} \otimes \cdots \otimes \mathbf{g}_{n}$, and define $\boldsymbol{\Psi}: L\left(X_{1}, X_{2}, \ldots, X_{n} ; \mathbb{R}\right) \rightarrow\left(X_{1} \otimes X_{2} \otimes \cdots \otimes X_{n}\right)^{*}$ as $\boldsymbol{\Psi}(\mathbf{g})=\hat{\mathbf{g}}$ where $\hat{\mathbf{g}}$ is the unique function such that $\mathbf{g}=\hat{\mathbf{g}} \circ \otimes$ given in (T ii). Then Ф is linear since

$$
\begin{gathered}
\boldsymbol{\Psi}\left(a \mathbf{f}+b \mathbf{f}^{\prime}\right)=\left(a \mathbf{f}+b \mathbf{f}^{\prime}\right) \circ \bigotimes=(a \mathbf{f}) \circ \bigotimes+\left(b \mathbf{f}^{\prime}\right) \circ \bigotimes \\
\quad=a(\mathbf{f} \otimes \bigotimes)+b\left(\mathbf{f}^{\prime} \circ \bigotimes\right)=a \boldsymbol{Q}(\mathbf{f})+b \boldsymbol{\Phi}\left(\mathbf{f}^{\prime}\right)
\end{gathered}
$$

Lemma V.1.07

Lemma.1.07. There is a "natural" isomorphism yielding $X_{1}^{*} \otimes X_{2}^{*} \otimes \cdots \otimes X_{n}^{*} \cong\left(X_{1} \otimes X_{2} \otimes \cdots \otimes X_{n}\right)^{*}$.

Proof. Define

$$
\boldsymbol{\Phi}:\left(X_{1} \otimes X_{2} \otimes \cdots \otimes_{n}\right)^{*} \rightarrow L\left(X_{1}, X_{2}, \ldots, X_{n} ; \mathbb{R}\right)=X_{1}^{*} \otimes X_{2}^{*} \otimes \cdots \otimes X_{n}^{*}
$$

as $\boldsymbol{\Phi}(\mathbf{f})=\mathbf{f} \circ \bigotimes$ where $\bigotimes: X_{1}^{*} \times X_{2}^{*} \times \cdots \times X_{n}^{*} \rightarrow L\left(X_{1}, X_{2}, \ldots, X_{n} ; \mathbb{R}\right)$ is defined (as above) as $\otimes\left(\left(\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{n}\right)\right)=\mathbf{g}_{1} \otimes \mathbf{g}_{2} \otimes \cdots \otimes \mathbf{g}_{n}$, and define $\boldsymbol{\Psi}: L\left(X_{1}, X_{2}, \ldots, X_{n} ; \mathbb{R}\right) \rightarrow\left(X_{1} \otimes X_{2} \otimes \cdots \otimes X_{n}\right)^{*}$ as $\boldsymbol{\Psi}(\mathbf{g})=\hat{\mathbf{g}}$ where $\hat{\mathbf{g}}$ is the unique function such that $\mathbf{g}=\hat{\mathbf{g}} \circ \otimes$ given in (T ii). Then $\boldsymbol{\Phi}$ is linear since

$$
\begin{gathered}
\boldsymbol{\Psi}\left(a \mathbf{f}+b \mathbf{f}^{\prime}\right)=\left(a \mathbf{f}+b \mathbf{f}^{\prime}\right) \circ \bigotimes=(a \mathbf{f}) \circ \bigotimes+\left(b \mathbf{f}^{\prime}\right) \circ \bigotimes \\
=a(\mathbf{f} \otimes \bigotimes)+b\left(\mathbf{f}^{\prime} \circ \bigotimes\right)=a \boldsymbol{\Phi}(\mathbf{f})+b \boldsymbol{\Phi}\left(\mathbf{f}^{\prime}\right) .
\end{gathered}
$$

Lemma V.1.07 (continued)

Lemma.1.07. There is a "natural" isomorphism yielding $X_{1}^{*} \otimes X_{2}^{*} \otimes \cdots \otimes X_{n}^{*} \cong\left(X_{1} \otimes X_{2} \otimes \cdots \otimes X_{n}\right)^{*}$.

Proof (continued). Now $\boldsymbol{\Phi} \circ \boldsymbol{\Phi}(\mathbf{f})=\boldsymbol{\Psi}(\mathbf{f} \circ \otimes)=\mathbf{f}($ take $\mathbf{g}=\mathbf{g} \circ \bigotimes$ and $\hat{\mathbf{g}}=\mathbf{f}$) and

$$
\begin{aligned}
\boldsymbol{\Phi} \circ \boldsymbol{\Phi}(\mathbf{f}) & =\boldsymbol{\Phi}(\hat{\mathbf{f}}) \text { where } \mathbf{f}=\hat{\mathbf{f}} \circ \bigotimes \\
& =\hat{\mathbf{f}} \circ \bigotimes=\mathbf{f},
\end{aligned}
$$

so $\boldsymbol{\Phi}$ and $\boldsymbol{\Psi}$ are inverse functions and hence $\boldsymbol{\Phi}$ is a bijection and so is a vector space isomorphism (and so is $\boldsymbol{\Psi}$). So $X_{1}^{*} \otimes X_{2}^{*} \otimes \cdots \otimes X_{n}^{*} \cong\left(X_{1} \otimes X_{2} \otimes \cdots \otimes X_{n}\right)^{*}$, as claimed.

Lemma V.1.08

Lemma V.1.08. For any two vector spaces X_{1} and X_{2}, there is a "natural" isomorphism yielding $L\left(X_{1} ; X_{2}\right) \cong X_{1}^{*} \otimes X_{2}$.

Proof. Define $\mathbf{f}: X_{1}^{*} \times X_{2} \rightarrow L\left(X_{1} ; X_{2}\right)$ as $\mathbf{f}\left(\left(\mathbf{g}, \mathbf{x}_{2}\right)\right)=\mathbf{h}$ where $\mathbf{h}\left(\mathbf{x}_{1}\right)=\mathbf{x}_{2}\left(\mathbf{g}\left(\mathbf{x}_{1}\right)\right.$ (notice $\left.\mathbf{g}\left(\mathbf{x}_{1}\right) \in \mathbb{R}\right)$. By Exercise V.1.7(a), \mathbf{f} is multilinear. So by (T ii), \mathbf{f} induces a unique linear map $\hat{\mathrm{f}}: X_{1}^{*} \otimes X_{2} \rightarrow L\left(X_{1} ; X_{2}\right)$ (here, $\left.Y=L\left(X_{1} ; X_{2}\right)\right)$ such that $\mathrm{f}=\hat{\mathrm{f}} \circ \otimes$.

Lemma V.1.08

Lemma V.1.08. For any two vector spaces X_{1} and X_{2}, there is a "natural" isomorphism yielding $L\left(X_{1} ; X_{2}\right) \cong X_{1}^{*} \otimes X_{2}$.

Proof. Define $\mathbf{f}: X_{1}^{*} \times X_{2} \rightarrow L\left(X_{1} ; X_{2}\right)$ as $\mathbf{f}\left(\left(\mathbf{g}, \mathbf{x}_{2}\right)\right)=\mathbf{h}$ where $\mathbf{h}\left(\mathbf{x}_{1}\right)=\mathbf{x}_{2}\left(\mathbf{g}\left(\mathbf{x}_{1}\right)\right.$ (notice $\left.\mathbf{g}\left(\mathbf{x}_{1}\right) \in \mathbb{R}\right)$. By Exercise V.1.7(a), \mathbf{f} is multilinear. So by (T ii), \mathbf{f} induces a unique linear map $\hat{\mathbf{f}}: X_{1}^{*} \otimes X_{2} \rightarrow L\left(X_{1} ; X_{2}\right)$ (here, $\left.Y=L\left(X_{1} ; X_{2}\right)\right)$ such that $\mathbf{f}=\hat{\mathbf{f}} \circ \otimes$. Now $\hat{f}\left(g \otimes x_{2}\right)=0$ implies $\left.f\left(g_{1}, x_{2}\right)\right)=0$ since $\otimes\left(\left(g, x_{2}\right)\right)=g \otimes x_{2}$. This implies that $\mathbf{f}\left(\left(\mathbf{g}, \mathbf{x}_{2}\right)\right)=\mathbf{h}=\mathbf{0}$ and so $\mathbf{h}\left(\mathbf{x}_{1}\right)=\mathbf{0}\left(\mathbf{x}_{1}\right)=\mathbf{x}_{2}\left(\mathbf{g}\left(\mathbf{x}_{1}\right)\right)=\mathbf{0}$ for all $\mathbf{x}_{1} \in X_{1}$. So either scalar $\mathbf{g}\left(\mathbf{x}_{1}\right)=0$ for all $\mathbf{x}_{1} \in X_{1}$ (i.e., $\mathbf{g}=\mathbf{0}$) or vector $\mathrm{x}_{1}=0$. This implies $\mathrm{g} \otimes \mathrm{x}_{2}=0$ (if $\mathrm{g}=0$ then by (TS) for $a=2$ we have $\mathbf{0} \otimes \mathbf{x}_{2}=(20) \otimes \mathbf{x}_{2}=2\left(\mathbf{0} \otimes \mathbf{x}_{2}\right)$ and by $(T A) \mathbf{0} \otimes \mathbf{x}_{2}=\mathbf{0}$, and similarly for $\left.\mathbf{x}_{2}=\mathbf{0}\right)$. That is, $\mathbf{f}\left(\mathbf{g} \otimes \mathbf{x}_{2}\right)=\mathbf{0}$ implies $\mathbf{g} \otimes \mathbf{x}_{2}=\mathbf{0}$. By Exercise V.1.7(b), this implies that \hat{f} is one to one (injective)

Lemma V.1.08

Lemma V.1.08. For any two vector spaces X_{1} and X_{2}, there is a "natural" isomorphism yielding $L\left(X_{1} ; X_{2}\right) \cong X_{1}^{*} \otimes X_{2}$.

Proof. Define $\mathbf{f}: X_{1}^{*} \times X_{2} \rightarrow L\left(X_{1} ; X_{2}\right)$ as $\mathbf{f}\left(\left(\mathbf{g}, \mathbf{x}_{2}\right)\right)=\mathbf{h}$ where $\mathbf{h}\left(\mathbf{x}_{1}\right)=\mathbf{x}_{2}\left(\mathbf{g}\left(\mathbf{x}_{1}\right)\right.$ (notice $\left.\mathbf{g}\left(\mathbf{x}_{1}\right) \in \mathbb{R}\right)$. By Exercise V.1.7(a), \mathbf{f} is multilinear. So by (T ii), \mathbf{f} induces a unique linear map $\hat{\mathbf{f}}: X_{1}^{*} \otimes X_{2} \rightarrow L\left(X_{1} ; X_{2}\right)$ (here, $\left.Y=L\left(X_{1} ; X_{2}\right)\right)$ such that $\mathbf{f}=\hat{\mathbf{f}} \circ \otimes$.

Now $\hat{\mathbf{f}}\left(\mathbf{g} \otimes \mathbf{x}_{2}\right)=\mathbf{0}$ implies $\left.\mathbf{f}\left(\mathbf{g}_{1}, \mathbf{x}_{2}\right)\right)=\mathbf{0}$ since $\otimes\left(\left(\mathbf{g}, \mathbf{x}_{2}\right)\right)=\mathbf{g} \otimes \mathbf{x}_{2}$. This implies that $\mathbf{f}\left(\left(\mathbf{g}, \mathbf{x}_{2}\right)\right)=\mathbf{h}=\mathbf{0}$ and so $\mathbf{h}\left(\mathbf{x}_{1}\right)=\mathbf{0}\left(\mathbf{x}_{1}\right)=\mathbf{x}_{2}\left(\mathbf{g}\left(\mathbf{x}_{1}\right)\right)=\mathbf{0}$ for all $\mathbf{x}_{1} \in X_{1}$. So either scalar $\mathbf{g}\left(\mathbf{x}_{1}\right)=0$ for all $\mathbf{x}_{1} \in X_{1}$ (i.e., $\mathbf{g}=\mathbf{0}$) or vector $\mathbf{x}_{1}=\mathbf{0}$. This implies $\mathbf{g} \otimes \mathbf{x}_{2}=\mathbf{0}$ (if $\mathbf{g}=\mathbf{0}$ then by (TS) for $a=2$ we have $\mathbf{0} \otimes \mathbf{x}_{2}=(20) \otimes \mathbf{x}_{2}=2\left(\mathbf{0} \otimes \mathbf{x}_{2}\right)$ and by $(\mathrm{TA}) \mathbf{0} \otimes \mathbf{x}_{2}=\mathbf{0}$, and similarly for $\left.\mathbf{x}_{2}=\mathbf{0}\right)$. That is, $\mathbf{f}\left(\mathbf{g} \otimes \mathbf{x}_{2}\right)=\mathbf{0}$ implies $\mathbf{g} \otimes \mathbf{x}_{2}=\mathbf{0}$. By Exercise V.1.7(b), this implies that $\hat{\mathbf{f}}$ is one to one (injective).

Lemma V.1.08 (continued)

Lemma V.1.08. For any two vector spaces X_{1} and X_{2}, there is a "natural" isomorphism yielding $L\left(X_{1} ; X_{2}\right) \cong X_{1}^{*} \otimes X_{2}$.

Proof (continued). Next, since X_{1} and X_{1}^{*} are finite dimensional then

$$
\begin{aligned}
\operatorname{dim}\left(X_{1}^{*} \otimes X_{2}\right) & =\operatorname{dim}\left(X_{1}^{*}\right) \operatorname{dim}\left(X_{2}\right) \text { by Exercise V.1.4(c) } \\
& =\operatorname{dim}\left(X_{1}\right) \operatorname{dim}\left(X_{2}\right) \text { by Lemma III.1.04 } \\
& =\operatorname{dim}(L(X ; Y)) \text { (see page } 27 \text { or think matrices). }
\end{aligned}
$$

So $\hat{\mathbf{f}}$ is onto (surjective), and hence $\hat{\mathbf{f}}$ is a vector space isomorphism and $L\left(X_{1} ; X_{2}\right) \cong X_{1}^{*} \otimes X_{2}$, as claimed.

Lemma V.1.B

Lemma V.1.B. Let $\mathbf{A}_{i}: X_{i} \rightarrow Y_{i}$ be linear maps for $1 \leq i \leq n$. Mapping h: $X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow Y_{1} \otimes Y_{2} \otimes \cdots \otimes Y_{n}$ defined as $\mathbf{h}=\otimes \circ\left(\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}\right)$ is multilinear.

Proof. Let $\mathrm{x}_{i}, \mathrm{x}^{\prime} \in X_{i}$ for $1 \leq i \leq n$ and let $a \in \mathbb{R}$. Then

$$
\begin{aligned}
& \mathbf{h}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{i}+\mathbf{x}_{i}^{\prime}, \ldots, \mathbf{x}_{n}\right) \\
&= \bigotimes\left(\left(\mathbf{A}_{1} \mathbf{x}-2, \mathbf{A}_{2} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i}\left(\mathbf{x}_{i}+\mathbf{x}_{i}^{\prime}\right), \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right. \\
& \text { by definition of } \mathbf{A}_{1} \otimes \mathbf{A}_{2} \otimes \cdots \otimes \mathbf{A}_{n} \\
&= \bigotimes\left(\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i} \mathbf{x}_{i}+\mathbf{A}_{i} \mathbf{x}_{i}^{\prime}, \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right) \text { since } \mathbf{A}_{i} \text { is linear } \\
&= \bigotimes\left(\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i} \mathbf{x}_{i}, \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right. \\
&\left.+\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i} \mathbf{x}_{i}^{\prime}, \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right) \text { by the definition } \\
& \text { of vector addition in } Y_{1} \times Y_{2} \times \cdots \times Y_{n} \ldots
\end{aligned}
$$

Lemma V.1.B

Lemma V.1.B. Let $\mathbf{A}_{i}: X_{i} \rightarrow Y_{i}$ be linear maps for $1 \leq i \leq n$. Mapping h: $X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow Y_{1} \otimes Y_{2} \otimes \cdots \otimes Y_{n}$ defined as $\mathbf{h}=\otimes \circ\left(\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}\right)$ is multilinear.

Proof. Let $\mathbf{x}_{i}, \mathbf{x}^{\prime} \in X_{i}$ for $1 \leq i \leq n$ and let $a \in \mathbb{R}$. Then

$$
\begin{gathered}
\mathbf{h}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{i}+\mathbf{x}_{i}^{\prime}, \ldots, \mathbf{x}_{n}\right) \\
=\bigotimes\left(\left(\mathbf{A}_{1} \mathbf{x}-2, \mathbf{A}_{2} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i}\left(\mathbf{x}_{i}+\mathbf{x}_{i}^{\prime}\right), \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right.
\end{gathered}
$$

by definition of $\mathbf{A}_{1} \otimes \mathbf{A}_{2} \otimes \cdots \otimes \mathbf{A}_{n}$
$=\bigotimes\left(\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i} \mathbf{x}_{i}+\mathbf{A}_{i} \mathbf{x}_{i}^{\prime}, \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right)$ since \mathbf{A}_{i} is linear
$=\bigotimes\left(\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i} \mathbf{x}_{i}, \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right.$
$\left.+\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i} \mathbf{x}_{i}^{\prime}, \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right)$ by the definition of vector addition in $Y_{1} \times Y_{2} \times \cdots \times Y_{n} \cdots$

Lemma V.1.B (continued)

Proof (continued).

$$
\begin{aligned}
= & \bigotimes\left(\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i} \mathbf{x}_{i}, \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right) \\
& +\bigotimes\left(\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i} \mathbf{x}_{i}^{\prime}, \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right) \\
& \text { since } \otimes \text { is linear (see Definition V.1.04) }
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{h}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{i} a, \ldots, \mathbf{x}_{n}\right) \\
& =\left(\left(\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A}_{2} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i}\left(\mathbf{x}_{i} a\right), \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right)\right. \\
& \oslash\left(\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A}_{2} \mathbf{x}_{2}, \ldots,\left(\mathbf{A}_{i} \mathbf{x}_{i}\right) a, \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right) \text { since } \mathbf{A}_{i}\right. \text { is linear } \\
& \bigotimes\left(\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A}_{2} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i} \mathbf{x}_{i}, \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right) a \\
& \text { since } \otimes \text { is linear (see Definition V.1.04) } \\
& =\mathbf{h}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n}\right) a \text {. }
\end{aligned}
$$

Lemma V.1.B (continued)

Proof (continued).

$$
\begin{aligned}
= & \bigotimes\left(\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i} \mathbf{x}_{i}, \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right) \\
& +\bigotimes\left(\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i} \mathbf{x}_{i}^{\prime}, \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right) \\
& \text { since } \bigotimes \text { is linear (see Definition V.1.04) }
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{h}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{i} a, \ldots, \mathbf{x}_{n}\right) \\
& =\bigotimes\left(\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A}_{2} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i}\left(\mathbf{x}_{i} a\right), \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right) \\
& =\bigotimes\left(\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A}_{2} \mathbf{x}_{2}, \ldots,\left(\mathbf{A}_{i} \mathbf{x}_{i}\right) a, \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right) \text { since } \mathbf{A}_{i}\right. \text { is linear } \\
& =\left(\left(\mathbf{A}_{1} \mathbf{x}_{1}, \mathbf{A}_{2} \mathbf{x}_{2}, \ldots, \mathbf{A}_{i} \mathbf{x}_{i}, \ldots, \mathbf{A}_{n} \mathbf{x}_{n}\right)\right) a \\
& \text { since } \otimes \text { is linear (see Definition V.1.04) } \\
& =\mathbf{h}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right) \text { a. }
\end{aligned}
$$

Hence \mathbf{h} is multilinear, as claimed.

