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Chapter V. Tensors and Multilinear Forms
V.1. Multilinear Forms—Proofs of Theorems
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Lemma V.1.05

Lemma V.1.05

Lemma V.1.05. A tensor product of finite dimensional vector spaces
X1,X2, . . . ,Xn always exists and any two are isomorphic “in a natural way.”

Proof. We have already argued in this section that a tensor product of
spaces X ∗

1 ,X ∗
2 , . . . ,X ∗

n is given by L(X1,X2, . . . ,Xn; R). By Note III.1.B,
Xi
∼= (X ∗

i )∗ “naturally,” so a tensor product of X1,X2, . . . ,Xn is given by
L(X ∗

1 ,X ∗
2 , . . . ,X ∗

n ; R), establishing existence.

For the isomorphism claim, suppose X and X ′ are tensor products with
maps

⊗
and

⊗′, with properties (T i) and (T ii). Then by (T i),⊗
: X1 × X2 × · · · × Xn → X is multilinear and by (T ii) with f =

⊗
and

Y = X there is a unique linear f̂ = Ψ : X1 × X2 × · · · × Xn → X such that⊗
= Ψ ◦

⊗′. Similarly, by (T i),
⊗′ : X1 × X2 × · · · × Xn → X ′ is

multilinear and by (T ii) with f =
⊗′ and Y = X ′ there is a unique linear

f̂ = Φ : X1 × X2 × · · · × Xn → X ′ such that
⊗′ = Φ ◦

⊗
. Hence

Ψ ◦Φ ◦
⊗

= Ψ ◦
⊗′ =

⊗
= IX ◦

⊗
.
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Lemma V.1.05

Lemma V.1.05 (continued)

Lemma V.1.05. A tensor product of finite dimensional vector spaces
X1,X2, . . . ,Xn always exists and any two are isomorphic “in a natural way.”

Proof (continued). One more time, by (T i)
⊗

= IX ◦
⊗

is multilinear
and by (T ii) with f =

⊗
and Y = X there is a unique linear function f̂

mapping X1 × X2 × · · · × Xn → X such that
⊗

= f̂ ◦
⊗

. But as shown
above we could take f̂ = Ix or f̂ = Ψ ◦Ψ, so we must have Ψ ◦Ψ = IX .
Similarly (interchanging the roles of X and X ′ and of

⊗
and

⊗′ (and by
the uniqueness of (T ii)) we have Ψ ◦Ψ = IX ′ . So Ψ and Ψ are inverses
of each other and so are one to one and onto. So Ψ and Ψ are linear one
to one and onto mappings between vector space X and X ′. That is, Ψ
and Ψ are vector space isomorphisms and X ∼= X ′ so that any two tensor
products of X1,X2, . . . ,Xn are isomorphic, as claimed.
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Lemma V.1.07

Lemma V.1.07

Lemma.1.07. There is a “natural” isomorphism yielding
X ∗

1 ⊗ X ∗
2 ⊗ · · · ⊗ X ∗

n
∼= (X1 ⊗ X2 ⊗ · · · ⊗ Xn)

∗.

Proof. Define

Φ : (X1 ⊗ X2 ⊗ · · ·⊗n)
∗ → L(X1,X2, . . . ,Xn; R) = X ∗

1 ⊗ X ∗
2 ⊗ · · · ⊗ X ∗

n

as Φ(f) = f ◦
⊗

where
⊗

: X ∗
1 ×X ∗

2 × · · · ×X ∗
n → L(X1,X2, . . . ,Xn; R) is

defined (as above) as
⊗

((g1, g2, . . . , gn)) = g1 ⊗ g2 ⊗ · · · ⊗ gn, and
define Ψ : L(X1,X2, . . . ,Xn; R) → (X1 ⊗ X2 ⊗ · · · ⊗ Xn)

∗ as Ψ(g) = ĝ
where ĝ is the unique function such that g = ĝ ◦

⊗
given in (T ii).

Then
Φ is linear since

Ψ(af + bf ′) = (af + bf ′) ◦
⊗

= (af) ◦
⊗

+(bf ′) ◦
⊗

= a
(
f ⊗

⊗)
+ b

(
f ′ ◦

⊗)
= aΦ(f) + bΦ(f ′).

() Differential Geometry May 25, 2019 5 / 10



Lemma V.1.07

Lemma V.1.07

Lemma.1.07. There is a “natural” isomorphism yielding
X ∗

1 ⊗ X ∗
2 ⊗ · · · ⊗ X ∗

n
∼= (X1 ⊗ X2 ⊗ · · · ⊗ Xn)

∗.

Proof. Define

Φ : (X1 ⊗ X2 ⊗ · · ·⊗n)
∗ → L(X1,X2, . . . ,Xn; R) = X ∗

1 ⊗ X ∗
2 ⊗ · · · ⊗ X ∗

n

as Φ(f) = f ◦
⊗

where
⊗

: X ∗
1 ×X ∗

2 × · · · ×X ∗
n → L(X1,X2, . . . ,Xn; R) is

defined (as above) as
⊗

((g1, g2, . . . , gn)) = g1 ⊗ g2 ⊗ · · · ⊗ gn, and
define Ψ : L(X1,X2, . . . ,Xn; R) → (X1 ⊗ X2 ⊗ · · · ⊗ Xn)

∗ as Ψ(g) = ĝ
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Lemma V.1.07

Lemma V.1.07 (continued)

Lemma.1.07. There is a “natural” isomorphism yielding
X ∗

1 ⊗ X ∗
2 ⊗ · · · ⊗ X ∗

n
∼= (X1 ⊗ X2 ⊗ · · · ⊗ Xn)

∗.

Proof (continued). Now Φ ◦Φ(f) = Ψ(f ◦
⊗

) = f (take g = g ◦
⊗

and
ĝ = f) and

Φ ◦Φ(f) = Φ(̂f) where f = f̂ ◦
⊗

= f̂ ◦
⊗

= f,

so Φ and Ψ are inverse functions and hence Φ is a bijection and so is a
vector space isomorphism (and so is Ψ). So
X ∗

1 ⊗ X ∗
2 ⊗ · · · ⊗ X ∗

n
∼= (X1 ⊗ X2 ⊗ · · · ⊗ Xn)

∗, as claimed.
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Lemma V.1.08

Lemma V.1.08

Lemma V.1.08. For any two vector spaces X1 and X2, there is a
“natural” isomorphism yielding L(X1;X2) ∼= X ∗

1 ⊗ X2.

Proof. Define f : X ∗
1 × X2 → L(X1;X2) as f((g, x2)) = h where

h(x1) = x2(g(x1) (notice g(x1) ∈ R). By Exercise V.1.7(a), f is
multilinear. So by (T ii), f induces a unique linear map
f̂ : X ∗

1 ⊗ X2 → L(X1;X2) (here, Y = L(X1;X2)) such that f = f̂ ◦
⊗

.

Now f̂(g ⊗ x2) = 0 implies f(g1, x2)) = 0 since
⊗

((g, x2)) = g ⊗ x2. This
implies that f((g, x2)) = h = 0 and so h(x1) = 0(x1) = x2(g(x1)) = 0 for
all x1 ∈ X1. So either scalar g(x1) = 0 for all x1 ∈ X1 (i.e., g = 0) or
vector x1 = 0. This implies g ⊗ x2 = 0 (if g = 0 then by (T S) for a = 2
we have 0⊗ x2 = (20)⊗ x2 = 2(0⊗ x2) and by (T A) 0⊗ x2 = 0, and
similarly for x2 = 0). That is, f(g ⊗ x2) = 0 implies g ⊗ x2 = 0. By
Exercise V.1.7(b), this implies that f̂ is one to one (injective).
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Lemma V.1.08

Lemma V.1.08 (continued)

Lemma V.1.08. For any two vector spaces X1 and X2, there is a
“natural” isomorphism yielding L(X1;X2) ∼= X ∗

1 ⊗ X2.

Proof (continued). Next, since X1 and X ∗
1 are finite dimensional then

dim(X ∗
1 ⊗ X2) = dim(X ∗

1 )dim(X2) by Exercise V.1.4(c)

= dim(X1)dim(X2) by Lemma III.1.04

= dim(L(X ;Y )) (see page 27 or think matrices).

So f̂ is onto (surjective), and hence f̂ is a vector space isomorphism and
L(X1;X2) ∼= X ∗

1 ⊗ X2, as claimed.
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Lemma V.1.B

Lemma V.1.B

Lemma V.1.B. Let Ai : Xi → Yi be linear maps for 1 ≤ i ≤ n. Mapping
h : X1 × X2 × · · · × Xn → Y1 ⊗ Y2 ⊗ · · · ⊗ Yn defined as
h =

⊗
◦(A1,A2, . . . ,An) is multilinear.

Proof. Let xi , x
′ ∈ Xi for 1 ≤ i ≤ n and let a ∈ R. Then

h(x1, x2, . . . , xi + x′
i , . . . , xn)

=
⊗

((A1x− 2,A2x2, . . . ,Ai (xi + x′
i ), . . . ,Anxn)

by definition of A1 ⊗ A2 ⊗ · · · ⊗ An

=
⊗

((A1x1,Ax2, . . . ,Aixi + Aix
′
i , . . . ,Anxn)) since Ai is linear

=
⊗

((A1x1,Ax2, . . . ,Aixi , . . . ,Anxn)

+(A1x1,Ax2, . . . ,Aix
′
i , . . . ,Anxn)) by the definition

of vector addition in Y1 × Y2 × · · · × Yn . . .
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Lemma V.1.B

Lemma V.1.B (continued)

Proof (continued).

=
⊗

((A1x1,Ax2, . . . ,Aixi , . . . ,Anxn))

+
⊗

((A1x1,Ax2, . . . ,Aix
′
i , . . . ,Anxn))

since
⊗

is linear (see Definition V.1.04)

and
h(x1, x2, . . . , xia, . . . , xn)

=
⊗

((A1x1,A2x2, . . . ,Ai (xia), . . . ,Anxn))

=
⊗

((A1x1,A2x2, . . . , (Aixi )a, . . . ,Anxn) since Ai is linear

=
⊗

((A1x1,A2x2, . . . ,Aixi , . . . ,Anxn))a

since
⊗

is linear (see Definition V.1.04)

= h(x1, x2, . . . , xn)a.

Hence h is multilinear, as claimed.
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Lemma V.1.B (continued)
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