
Differential Geometry (and Relativity) - Summer 2019

Homework 2, Sections 1.2 and 1.3

Due Tuesday, June 11 at 1:00

Write in complete sentences!!! Explain what you are doing and convince me that you understand

what you are doing and why.

I.2.3. Find the Gauss curvature of the ellipsoid
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at the end points of its three axes, i.e., at the points ±(a, 0, 0), ±(0, b, 0), and ±(0, 0, c). You

may use the results of Exercise I.1.7.

I.3.2(d) For the surface of revolution

~X(u, v) = (a coshu cos v, a coshu sin v, b sinhu),

sketch the profile curve (v = 0) in the xz-plane, and then sketch the surface. In each case,

prove that ~X is regular and give an equation of the surface in the form g(x, y, z) = 0. Assume

a and b are positive constants.

I.3.7(a,b) Let ~α(u) = (cos u, sinu, 0). Through each point of ~α(u), pass a unit line segment with

midpoint ~α(u) and direction vector
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(0, 0, 1).

The resulting surface,

~X(u, v) = ~α(u) + v~β(u), −
1

2
≤ v ≤

1

2

is called a Möbius strip. (a) Write out the coordinate functions of ~X(u, v). (b) Sketch the

rulings for u = 0, π/2, π, and 3π/2.

I.3.7(c) Connect the end points of these rulings by drawing the u-parameter curve ~X(u, 1/2) for

0 ≤ u ≤ 4π. Note that the u parameter curves are closed and have period 4π, except for

~α(u) = ~X(u, 0), which has period 2π.


