Differential Geometry (and Relativity) - Summer 2019

Homework 5, Sections I.7 and I.8 (Revised)

Due Monday, June 23 at 1:00

Write in complete sentences!!! Explain what you are doing and convince me that you understand what you are doing and why.

I.7.2(a) Use Exercise I.7.1 to find the geodesic curvature of a circle of latitude on sphere (a *u*-parameter curve in Example 7 in Section I.3). Such a circle can be given parametrically as

$$\vec{\alpha}(u) = (R\cos v^*\cos u, R\cos v^*\sin u, R\sin v^*)$$

where v^* is fixed.

- **I.7.12.** Suppose surface M has metric form $ds^2 = Edu^2 + Gdv^2$, with $E_v = G_v = 0$.
 - (a) Verify that the only non-zero Christoffel symbols Γ_{ij}^r are

$$\Gamma_{11}^1 = \frac{E_u}{2E}, \ \Gamma_{12}^2 = \Gamma_{21}^2 = \frac{G_u}{2G}, \ \Gamma_{22}^1 = -\frac{G_u}{2E}.$$

- (b) Show that a geodesic on M satisfies $v'' + \frac{G_u}{G}u'v' = 0$ and integrate this equation to obtain Gv' = h (a non-zero constant). HINT: Produce a differential equation based on the Christoffel symbols Γ_{ij}^2 , divide it by v', and solve by integration.
- **I.8.1(a).** Use Equation (59),

$$K = \frac{-1}{2\sqrt{EG}} \left\{ \frac{\partial}{\partial u} \left[\frac{G_u}{\sqrt{EG}} \right] + \frac{\partial}{\partial v} \left[\frac{E_v}{\sqrt{EG}} \right] \right\},\,$$

to compute the Gauss curvature of the sphere

$$\vec{X}(u,v) = (R\cos u\cos v, R\sin u\cos v, R\sin v).$$

 $\mathbf{I.8.1(c)}$. Use Equation (59),

$$K = \frac{-1}{2\sqrt{EG}} \left\{ \frac{\partial}{\partial u} \left[\frac{G_u}{\sqrt{EG}} \right] + \frac{\partial}{\partial v} \left[\frac{E_v}{\sqrt{EG}} \right] \right\},\,$$

to compute the Gauss curvature of the torus

$$\vec{X}(u,v) = ((R + r\cos u)\cos v, (R + r\cos u)\sin v, r\sin u)$$

where r > 0 and $R \ge r$.