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Chapter II. Affine Spaces

II.1. Spaces

Note. In this section, we define an affine space on a set X of points and a vector

space T . In particular, we use affine spaces to define a tangent space to X at

point x. In Section VII.2 we define manifolds on affine spaces by mapping open

sets of the manifold (taken as a Hausdorff topological space) into the affine space.

Ultimately, we think of a manifold as pieces of the affine space which are “bent

and pasted together” (like paper mache). We also consider subspaces of an affine

space and translations of subspaces. We conclude with a discussion of coordinates

and “charts” on an affine space.

Definition II.1.01. An affine space with vector space T is a nonempty set X of

points and a vector valued map d : X ×X → T called a difference function, such

that for all x, y, z ∈ X:

(A i) d(x, y) + d(y, z) = d(x, z),

(A ii) the restricted map dx = d|{x}×X : {x} × X → T defined as mapping

(x, y) 7→ d(x, y) is a bijection.

We denote both the set and the affine space as X.
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Note. We want to think of a vector as an arrow between two points (the “head”

and “tail” of the vector). So d(x, y) is the vector from point x to point y. Then

we see that (A i) is just the usual “parallelogram property” of the addition of

vectors. Property (A ii) can be thought of in terms of putting vectors in a “standard

position” with their tails all at point x. In fact, we show below in Lemma II.1.A

that d(x, x) = 0 ∈ T and so it could be convenient to thank point x as the origin

for all vectors with their tails at x. We will see in Exercise II.1.1 that all such

vectors in T of the form d(x, y) form a vector space. Notice that an affine space

consists of a set X, vector space T , and difference function d; however, an affine

space (per se) is not itself a vector space.

Examples. With X = R (as a point set) and T = R1 (as a vector space), we can

define d(x, y) = y − x. We can similarly let X = Rn (as a point set), T = Rn (as

a vector space) and define

d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = (y1 − x1, y2 − x2, . . . , yn − xn).

These are examples of affine spaces where d(x, y) is the vector in Rn from point x

to point y (with the usual arrow with magnitude-an-direction interpretation, valid

in Rn). Notice that in these examples, (A i) simply expresses the summation of

vectors in Rn and (A ii) sets up a bijection where x is mapped to the 0 vector (as

we now show).

Lemma II.1.A. In an affine space with difference function d we have

(a) d(x,x) = 0 for all x ∈ X, and

(b) d(x,y) = −d(y,x) for all x,y ∈ X.
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Note II.1.A. Notationally, in an affine space if d(x, y) = t then we write y = x+t;

think that we start at point x and go “directed distance” t ending at point y. If

V ⊆ T then we write x + V = {d(x, y) = t | t ∈ V } = {x + t | t ∈ V }.

Note/Definition II.1.02. In an affine space, define for x, y, z ∈ X and a ∈ R

(x, y) + (x, z) = d−1
x (dx(x, y) + dx(x, z))

(x, y)a = d−1
x ((d(x, y)a)).

Then by Exercise II.1.1(a), these two operations define vector addition and scalar

multiplication so that {x}×X has a vector space structure. This vector space is the

tangent space to X at point x, denoted TxX. For v ∈ TxX, we denote x + d−1
x (v)

as x + v.

Note. Since TxX ∼= T for each x ∈ X by Exercise II.1.1(b), we see that V =

{(x, y) | x, y ∈ X} can be interpreted as a vector space with a few added details.

We could define an equivalence relation on V where (x, y) ∼ (w, z) if and only if

in T d(x, y) = d(w, z) and then consider W = V∼, the set of equivalence classes in

V . Then we could define vector addition and scalar multiplication with Definition

II.1.02 (where x can vary) on equivalence classes in terms of representation (we

would need to check that the definitions are well-defined). In addition, since dx

is a bijection between TxX and T then we see that d(X ×X) is trivially a vector

space since d(X ×X) = T .
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Definition. In an affine space with tangent space at x of TxX, the vectors in TxX

are called tangent (or bound) vectors at x. The vectors in vector space T are free

vectors. Mapping dx : {x} ×X → T is a freeing map and d−1
x : T → {x} ×X is a

binding map.

Definition. Let X be an affine space with vector space T and difference function

d. Then X ′ ⊆ X is an affine subspace (or flat) of X if

(i) d(X ′, X ′) ⊆ T is a vector subspace of T , and

(ii) X ′ is an affine space with vector space d(X ′, X ′) and difference function

d|X ′×X ′ : X ′ × X ′ → d(X ′, X ′) (so that for (x, y) ∈ X ′ × X ′ we have

d|X ′×X ′(x, y) = d(x, y).

Recall that a hyperplane of a n-dimensional vector space is an (n− 1)-dimensional

subspace. If d(X ′×X ′) is a hyperplane of T , then X ′ is an affine hyperplane of X.

Note/Definition. As observed in the examples above for Rn, we could take any

vector space X and define d(X, X) → X as (x,y) 7→ y− x, giving an affine space

with vector space X and difference function d. This is called the natural affine

structure on vector space X.

Note. An intersection of subspaces of a vector space is again a subspace. This

gives us one way to define an affine subspace generated by a set S.
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Definition. Let X be an affine space with vector space T and let S ⊆ X. The

affine subspace generated by set S (or affine hull) H(S) of S is the intersection of

all affine subspaces of X containing S. This is the “smallest” (in a set inclusion

sense) affine subspace of X containing S.

Definition II.1.04. The translate X ′+t of an affine subspace X ′ of X by a vector

t ∈ T is the affine subspace {y = x′ + t | x′ ∈ X ′}. Two affine subspaces X ′ and

X ′′ of X are parallel if d(X ′ ×X ′) = d(X ′′ ×X ′′).

Note. In Rn, we might think of parallel structures as “flat” slices of Rn that do not

intersect. For example, in R3 two planes are parallel if they are translates of each

other. However, two line in R3 can be parallel (that is, not intersect) without being

translates of each other. Additionally, if we consider subspace of Rn they must

intersect since every subspace of Rn must contain 0. In the next lemma we see that

subspaces X ′ and X ′′ of affine space X are parallel if and only if X ′′ = X ′ + t for

some t ∈ T . This means that “parallel” in the affine space setting has more of a

“same distance apart” interpretation then the more traditional “not intersecting”

interpretation from geometry. For example, with X = R2, X ′ = {(x, 0) | x ∈ R},

X ′′ = {(x, 1) | x ∈ R}, T = R2, and d((x1, y1), (x2, y2)) = (x2−x1)ı+(y2−y1), we

have d(X ′ × X ′) = d(X ′′ × X ′′) = {xı | x ∈ R} ⊆ T . So X ′ and X ′′ are parallel.

Notice in X = R2 that we have:
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In Definition II.1.07 below, we’ll define dim(X ′) = dim((X ′×X ′)) and dim(X ′′) =

dim(d(X ′′×X ′′)), so in fact our definition of parallel affine subspaces requires that

the subspaces be of the same dimension. However, dim(X ′) = dim(X ′′) is not

sufficient for our version of parallel, as we now show by example.

Example. Let X = R3, X ′ = {(x, 0, 0) | x ∈ R}, X ′′ = {(0, 1, z) | z ∈ R}, T = R3,

and d((x1, y1, z1)) = (x2−x1)ı+(y20y1)+(z2−z1)k. Then d(X ′×X ′) = {xı | x ∈ R}

and d(X ′′ ×X ′′) = {zk | z ∈ R}. So subspace X ′ and X ′′ are not parallel, though

dim(X ′) = dim(X ′′) = 1. Notice that in R3, sets X ′ and X ′′ are skew lines:

Note. By Exercise II.1.2(c), X ′ + t is itself an affine subspace of X. By Exercise

II.1.2(b), X ′ + t = {(x′ + t) + s | s ∈ d(X ′ ×X ′)} for every x′ ∈ X ′.
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Lemma II.1.05. Two affine subspaces X ′ and X ′′ of X are parallel if and only if

X ′′ = X ′ + t for some t ∈ T .

Note. In light of Lemma II.1.05, it might make more sense to define affine sub-

spaces X ′ and x′′ as parallel if X ′′ = X ′+ t for some t ∈ T . The concept of parallel

from geometry carries with it an idea of non-intersection so we might want to add

the constraint that t ∈ T but t 6∈ d(X ′ ×X ′); for t ∈ d(X ′ ×X ′) then X ′′ = X ′.

Lemma II.1.06. For X a vector space, X ′ ⊆ X is an affine subspace of X if and

only if X ′ is a translate of some vector subspace of X.

Definition II.1.07. Let X be an affine space with vector space T . The dimension

of affine space X is the dimensional of its space T of free vectors; i.e., dim(X) =

dim(T ).

Note. Let X be an affine space with vector space T (of dimension n) and difference

function d. Since dim(T ) = n then by the Fundamental Theorem of Finite Dimen-

sional Vector Spaces (see Theorem 3.3.A of “3.3. Coordinatization of Vectors” in

my online notes for Linear Algebra [MATH 2010]) we have T ∼= Rn. For a given

a ∈ X (which will act as an “origin” for a coordinate system), we know that as a

vector space (defined in Definition II.1.02) TaX ∼= T by Exercise II.1.1(b). So for

a given a ∈ X we have a bijection mapping TaX 7→ T 7→ Rn. Let Xa denote this

bijection. Notice X1 = a ◦ da where A : T → Rn is a vector space isomorphism.

http://faculty.etsu.edu/gardnerr/2010/c3s3.pdf
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Definition. Let X be an affine space with vector space T and difference function

d. Let a ∈ X and let Ca : TaX → Rn be a bijection as described above. Then Ca

is a chart (or a choice of coordinates) on X.

Note. This is similar to our approach later when we define charts on manifolds

modeled on affine spaces.

Note. In the chart Cx above, a basis β = {b1,b2, . . . ,bn} for T defines a basis

βx = {d−1
x (b1),d

−1
x (b2), . . . ,d

−1
x (bn)} = {β1x, β2x, . . . , βnx} of TxX. If we make two

choices of the origin, a and a′, and two choices of basis, β and β′, then to change from

the first coordinate system (unprimed) to the second coordinate system (primed)

we must map Rn to Rn by first converting from basis β to β′ with matrix [Iβ′

β and

then translating “origin” a′ to “origin” a by adding A(d(a′, a)) (i.e., the vector

from a′ to a in the β′ system):
x1 ′

x2 ′

...

xn ′

 = [I]β
′

β


x1

x2

...

xn

 + A(d(a′, a))

or xi ′ = bi
jx

j + ai where bi
j is the ith coordinate in the β′ system of the jth vector

in β, and ai is the ith coordinate of the vector d(a′, a) in the β′ system.
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