II.2. Combinations of Points

Note. We define an affine combination of points in an affine space.

Note. If x and y are points in affine space X (with vector space T and difference function **d**) then we can describe the "midpoint" of x and y as $x + \frac{1}{2}\mathbf{d}(x,y)$ or $y + \frac{1}{2}(y,x)$. Notice that this is meaningful, for if $z = x + \frac{1}{2}\mathbf{d}(x,y)$ then $\mathbf{d}(x,z) = \frac{1}{2}\mathbf{d}(x,y)$. Since $\mathbf{d}(x,y) \in T$ then $\frac{1}{2}\mathbf{d}(x,y)$ is meaningful and since $\mathbf{d}_x : \{x\} \times X \to T$ is a bijection then point z is uniquely determined from the equation $\mathbf{d}(x,z) = \frac{1}{2}\mathbf{d}(x,y)$. More generally, we can define any point on a line joining x and y.

Definition II.2.01. Let X be an affine space with vector space T and difference function **d**. For any $\mu, \lambda \in \mathbb{R}$ with $\mu + \lambda = 1$ and for any $x, y \in X$, the affine combination $\mu x + \lambda y$ is the point in X defined equivalently by $x + \lambda \mathbf{d}(x, y)$ or $y + \mu \mathbf{d}(y, x)$.

Note. By taking repeated affine combinations of points two at a time, we can deal with a more general affine combination.

Definition. Let X be an affine space with vector space T and difference function d. For any $x_1, x_2, \ldots, x_k \in X$ and $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{R}$ such that $\sum_{i=1}^k \lambda_i = 1$, the *affine combination* $\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n$ is defined as

$$\lambda_1 x_1 + (1 - \lambda_1) \left(\frac{\lambda_2}{1 - \lambda_1} x_2 + \left(1 - \frac{\lambda_2}{1 - \lambda_1} \right) \left(\frac{\lambda_3}{1 - \lambda_1 - \lambda_2} x_3 + \left(1 - \frac{\lambda_3}{1 - \lambda_1 - \lambda_2} \right) \left(\frac{\lambda_4}{1 - \lambda_1 - \lambda_2 - \lambda_3} x_4 + \left(\dots + \left(1 - \frac{\lambda_{n-1}}{1 - \lambda_1 - \lambda_2 - \dots - \lambda_{n-2}} \right) x_n \right) \dots \right).$$

Note. In Exercise II.2.1(b), it is shown that the order of the points (and λ 's) can be permuted around and the formula for the affine combination remains unchanged.

Note. In an affine space X, the affine hull H(S) for $S \subseteq X$ satisfies

$$H(S) = \left\{ \lambda_1 x_2 + \lambda_2 x_2 + \dots + \lambda_k x_k \ \left| \ x_i \in S \text{ for } i \in \{1, 2, \dots, k\}, \sum_{i=1}^k \lambda_i = 1, k \in \mathbb{N} \right\},\right.$$

as is to be shown in Exercise II.2.2(a). Set $S \subseteq X$ is an affine subspace of X if and only if H(S) = S by Exercise II.2.2(b).

Definition. Let X be an affine space and $S \subseteq X$. The *convex hull* C(S) is the set

$$\left\{\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k \ \left| \ x_i \in S, \lambda_i > 0, i \in \{1, 2, \dots, k\}, \sum_{i=1}^k \lambda_i = 1, k \in \mathbb{N} \right\}.\right\}$$

Revised: 5/31/2019