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Chapter III. Dual Spaces

III.1. Contours, Covariance, Contravariance, Dual Basis

Note. In this section X and Y denote finite dimensional real vector spaces. We

take X to be n-dimensional and Y to be m-dimensional. Therefore, by the Fun-

damental Theorem of Finite Dimensional Spaces we have X ∼= Rn and Y ∼= Rm

(see my online notes on “3.3. Coordinatization of Vectors” for sophomore Linear

Algebra [MATH 2010]).

Note/Definition. The set of all linear maps from X to Y , denoted L(X, Y ),

is itself a vector space. When Y = R, the elements of L(X, R) are called linear

functionals on X (or dual vectors or covariant vectors). By contrast, the vectors in

X are called contravariant vectors. Vector space L(X, R) is the dual space of X,

denoted X∗.

Note. Dodson and Poston sing the praises of geometrically interpreting the ele-

ments of X for which a functional is constant as a level contour (line, surface, etc.;

see page 57). When a nonzero functional on an n-dimensional space is set equal to

a constant, the subset of X satisfying the equation is an n−1 dimensional subspace

(i.e., an “affine hyperplane”).

http://faculty.etsu.edu/gardnerr/2010/c3s3.pdf
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Note/Definition. For A ∈ L(X, Y ) and f ∈ Y ∗ we have A : X → Y and

f : Y → R, so we can define f ◦ A : X → R where f ◦ A ∈ X∗. So we define the

dual map of A ∈ L(X, Y ) as A∗ ∈ L(Y ∗, X∗) by A∗(f) = f ◦A for f ∈ Y ∗.

Note. We know that X∗ is itself a vector space. We are interested in finding a

basis for X∗ and finding a way to change bases of X∗ (as they relate to changes in

bases of X). First, we need to consider the dimension of X and X∗.

Lemma III.1.04. Let X be an n-dimensional real vector space with dual space

X∗. Then dim(X∗) = dim(X).

Definition. For n-dimensional vector space X with basis β = {b1,b2, . . . ,bn},

the basis β∗ = {b1,b2, . . . ,bn} (where bj : X → R is defined by mapping x =

a1b1 + a2b2 + · · ·+ anbn 7→ aj) is the dual basis of β.

Note.III.1.A. With bi ∈ β∗ and bj ∈ β we have

bibj = bi(0b1 + 0b2 + · · ·+ 0bj−1 + 1bj + 0bj+1 + · · ·+ 0bn) = δi
j =

 1 if i = j

0 if i 6= j.

Lemma III.1.A. Given a linear functional f ∈ X∗ where X = R, there is y ∈ Rn

such that f(x) = 〈x,y〉 (the inner product on Rn), and conversely for each y ∈ Rn

the mapping x 7→ 〈x,y〉 is a linear functional in X∗. That is, X∗ is isomorphic to

Rn when X = Rn.
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Note. Dodson and Poston say “It is tempting to identify X∗ and X. . . However,

this has great disadvantages because the isomorphism depends very much on the

choice of bases.” See page 59. As seen in Lemma III.1.A, for X = Rn we have

X∗ = Rn. However, in the proof of Lemma III.1.A we used inner products to

represent linear functionals. In this section we want to stay in the setting of vectors

and matrices. In this case, we can take X = Rn where the elements of X are

column vectors and then X∗ ∼= Rn where the elements of X∗ are row vectors. then

the matrix product yx, where y ∈ X∗ is 1×n and x ∈ X is n× 1, yields the scalar

〈y,xt〉 (or technically the 1 × 1 matrix containing 〈y,xt〉). Here we use “t” the

represent the transpose of a matrix, since later we will use “T” to represent that

adjoint of a linear operator.

Note. In infinite dimensional vector spaces, it may not be the case that X ∼= A∗.

For example, if X = Lp(E) where 1 ≤ p < ∞ (the classical Banach spaces on

Lebesgue measurable set E: Lp(E) = {f measurable function on E |
∫

E |f |
p <

∞}) ten X∗ ∼= Lq(E) where 1/P + 1/q = 1 (and p = 1 implies q = ∞), But

Lp(E) 6∼= Lq(E) unless p = q = 2. In fact, X∗ is not equal to Lq(E) in this

case but instead X∗ is isometrically isomorphic to Lq(E). See my Real Analysis

(MATH 5210/5220) online notes on 8.1. The Riesz Representation for the Dual

of Lp, 1 ≤ p < ∞ and 19. General Lp Spaces: Completeness, Duality, and Weak

Convergence.

http://faculty.etsu.edu/gardnerr/5210/notes/8-1.pdf
http://faculty.etsu.edu/gardnerr/5210/notes/8-1.pdf
http://faculty.etsu.edu/gardnerr/5210/notes3.htm
http://faculty.etsu.edu/gardnerr/5210/notes3.htm
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Note III.1.A. Let X have basis β = {b1,b2, . . . ,bn} and X∗ have basis β∗ =

{b1,b2, . . . ,bn} where β∗ is the dual basis of β. Then for x ∈ X, say x = x1b1 +

x2b2 + · · ·+xnbn = (x1, x2, . . . , xn), and f ∈ X∗, say f = f1b
1 +f2b

2 + · · ·+fnb
n =

(f1, f2, . . . , fn) (here we use coordinate vectors relative to the ordered bases β and

β∗), then we have

f(x) = f(x1b1 + x2b2 + · · ·+ xnbn) by the definition of x

= f(xjbj) by the Einstein summation convention

= (f1b
1 + f2b

2 + · · ·+ fnb
n)(xjbj) by the definition of f

= fix
j(bibj) by commutivity of scalar multiplication

= fix
jδi

j by Note III.1.A

= fix
i.

So similar to Lemma III.1.A we see that a linear function on X = Rn is represented

by an inner product (here, the inner product of the coordinate vectors of f and x

with respect to the ordered bases β∗ and β, respectively).

Theorem III.1.A. Let β = {b1,b2, . . . ,bn} be a basis for X and β′ = {b′
1,b

′
2, . . . ,b

′
m}

be a basis for Y such that the m×n matrix A = [A]β
′

β represents a linear transforma-

tion from X to Y with respect to ordered bases β and β′. Let β∗ and β′ ∗ be the dual

bases of X∗ and Y ∗, respectively. Then the n×m matrix A∗ = [A∗]β
∗

β′ ∗ =
(
[A]β

′

β

)t

,

where t represents the transpose operator on a matrix.
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Note. As seen in the proof of Theorem III.1.A, in order to represent a linear

transformation from X to Y , or a linear transformation from Y ∗ to X∗, as a matrix

we need to represent elements of X or elements of Y ∗, respectively, as column

vectors (with respect to ordered bases β of X and β′ ∗ of Y ∗, respectively) when

multiplying these vectors on the left by the matrices. Notice that Dodson and

Poston have the matrices on the left but still use row vectors; see page 60.

Note. If β and β′ are both ordered bases for X then there is an n×n matrix which

converts coordinate vectors with respect to β to coordinate vectors with respect to

β′. We denote this matrix as [I]β
′

β , as in Section I.2.08. The columns of this matrix

are the coordinate vectors of β written in terms of the basis β′. So if x ∈ X, the

(column) coordinate vector of x with respect to the ordered basis β in [x]β, and the

(column) coordinate vector of x with respect to ordered basis β′ is [x]β
′
then we

have [I]β
′

β [x]β = [x]β
′
. Also, the inverse of [I]β

′

β is [I]ββ′ so that [I]β
′

β [I]ββ′ = [I]ββ = [δj
i ].

Theorem III.1.B. Let β = {b1,b2, . . . ,bn} and β′ = {b′
1,b

′
2, . . . ,b

′
n} be bases

for X and let β∗ = {b1,b2, . . . ,bn} be the dual basis of β (so that β∗ is a basis of

X∗). With β′ ∗ = {b′ 1,b′ 2, . . . ,b′n} the dual basis of β′, for f ∈ X∗ where

f =
n∑

i=1

fib
i = fib

i =
n∑

i=1

f ′ib
′ i = f ′ib

′ i

we have f ′i = bj
ifj where the bj

i are coordinates of b′
i ∈ β′ with respect to ordered

basis β (that is, bj
i satisfies b′

i =
∑n

j=1 bj
ibj = bj

ibj).
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Note. Theorem III.1.B shows us that covariant vector f “transforms covariantly”;

that is, to transform from one basis to another in X∗ we have sums over superscripts

(“upper indices”) for the components relative to a basis, as in f ′i = bj
ifj and b′

i =

bj
ibj. Also, vectors (or “contravariant vectors”) transform contravariantly. As

observed in the previous Note and in the proof of Theorem III.1.B, [I]β
′

β [x]β = [x]β
′

and [I]ββ′[x]β
′
= [x]β, so that for x ∈ X we have

b1
1 b1

2 · · · b1
n

b2
1 b2

2 · · · b2
n

...
... . . . ...

bn
1 bn

2 · · · bn
n




x′ 1

x′ 2

...

x′n

 =


x1

x2

...

xn

 ,

so that 
x′ 1

x′ 2

...

x′n

 =


b̃1
1 b̃1

2 · · · b̃1
n

b̃2
1 b̃2

2 · · · b̃2
n

...
... . . . ...

b̃n
1 b̃n

2 · · · b̃n
n




x1

x2

...

xn


where [b̃j

i ] = [bj
i ]
−1, or b̃i

kb
k
j = δi

j, and so x′ i = b̃i
jx

j. That is, to change from

one basis to another in X we have sums over subscripts (“lower indices”) for the

components relative to a basis. The pattern is: upper indices on objects (covariant

vectors or components of covariant vectors) indicate covariance, and lower indices

on objects (contravariant vectors or components of contravariant vectors) indicate

contravariance.
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Note III.1.B. We now consider (X∗)∗. since X and X∗ are isomorphic real vector

spaces (when X is finite dimensional), we should not be surprised to learn (X∗)∗ is

also isomorphic to X. In Exercise III.1.1(a), for each x ∈ X we define ∗x∗ ∈ (X∗)∗

(so ∗x∗ : X∗ → R) ad ∗x∗(f) = f(x) ∈ R for all f ∈ X∗. In Exercise III.1.1(b), we

define θ : X → (X∗)∗ as θ(x) = ∗x∗ and show that θ is a linear transformation. Let

β = {b1,b2, . . . ,bn} be a basis for X, let β∗ = {b1,b2, . . . ,bn} be the dual basis

of β, and let (β∗)∗ = {b1 ∗,b2 ∗, . . . ,bn ∗} be the deal basis to β∗. So β∗ is a basis

for X∗ and (β∗)∗ is a basis for (X∗)∗. For f ∈ X∗, say f = fib
i, we have

bi ∗(f) = bi ∗(fib
i) = bi ∗(f1, f2, . . . , fn)

= fi by the definition of dual basis of β∗

= (f1b
1 + f2b

2 + . . . + fnb
n)(bi) since bj(bi) = δj

i by Note III.1.1

= f(f) by the definition of ∗x∗ when x = bi ∈ X

= (θ(bi))(f) by definition of θ.

Therefore θ maps basis β to basis (β∗)∗ with bi 7→ bi ∗ for each i ∈ {1, 2, . . . , n}.

Since θ maps β one to one and onto (β∗)∗ then θ maps X one to one and onto

(X∗)∗. Therefore θ is a vector space isomorphism and gives a “natural” way to

identify (X∗)∗ with X, and to identify bi ∗ with bi. Dodson and Poston use this

observation to justify the statement: “We shall simply regard X and X∗ as each

other’s duals, and forget about (X∗)∗; in fact that is why the word ‘dual’ is used

here at all.” See page 63.
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Note. The previous argument only holds for finite dimensional vector space. For

example, on a measurable set E, (L1)∗ ∼= L∞ (by the Riesz Representation The-

orem), but (L∞)∗ 6∼= L1 (by the Kantorovitch Representation Theorem) and so

(L1)∗)∗ 6∼= L1. See my online notes for Real Analysis (MATH 5210/5220) on The

Riesz Representation Theorem and The Kantorovich Representation Theorem.
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http://faculty.etsu.edu/gardnerr/5210/notes/8-1.pdf
http://faculty.etsu.edu/gardnerr/5210/notes/8-1.pdf
http://faculty.etsu.edu/gardnerr/5210/notes/19-3.pdf

