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Chapter IV. Metric Vector Spaces

IV.1. Metrics

Note. In this section we consider bilinear forms, inner products, and norms.

Dodson and Poston discuss dot products and angles between vectors in R2. We

start with bilinear forms.

Definition IV.1.01. A bilinear form on a vector space X is a function F : X×X →

R that is linear in each variable as follows. For all x,x′,y,y′ ∈ X and for all a ∈ R:

(B i) F(x + x′,y) = F(x,y) + F(x′,y) and F(x,y + y′) = F(x,y) + F(x,y′).

(B ii) F(xa,y) = aF(x,y) = F(x,ya) (we follow Dodson and Poston’s notation

here of putting scalars on the right of vectors).

A bilinear form in X is

(i) symmetric if F(x,y) = F(y,x) for all x,y ∈ X,

(ii) anti-symmetric if F(x,y) = −F(x,y),

(iii) non-degenerate if F(x,y) = 0 for all y ∈ X implies x = 0,

(iv) positive definite if F(x,x) > 0 for all x 6= 0,

(v) negative definite if F(x,x) < 0 for all x 6= 0,

(vi) indefinite if it is neither positive definite nor negative definite.
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Also,

(vii) A metric tensor on X is a symmetric non-degenerate bilinear form.

(viii) An inner product on X is a positive or negative definite metric tensor. We

will always take inner products to be positive definite! (The “geometry”

is the same whether the inner product is positive definite or negative definite

since orthogonality and the angles between vectors are the same in both cases.)

(ix) A symplectic structure on X is a anti-symmetric non-degenerate bilinear form.

Note. Our text book does not address symplectic structures, but Dodson and

Poston claim that they play a central role in classical mechanics.

Note. In Exercise IV.1.4, it is to be shown that the set of all bilinear forms on X

form a real vector space. We denote this vector space as L2(X, R) = L(X, X; R).

Note. An inner product is, by definition, a metric tensor. A metric tensor is

not required to be positive definite. The Lorentz metric tensor (which will will

somewhat misleadingly call the “Lorentz metric”) from special relativity will be an

example of an indefinite metric tensor.

Definition IV.1.02. A metric vector space (X,G) is a vector space X with a

metric tensor G : X ×X → R. An inner product space (X,G) is a vector space X

with an inner product G : X ×X → R.
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Note. In a metric vector space (X,G) we will often abbreviate G(x,y) as x · y

(even though G may not be positive definite or negative definite and so may not

be an inner product), and refer to the metric vector space simply as X. We will

use the symbol G exclusively for metric tensors (including inner products).

Definition IV.1.03. The standard inner product on R is defined by

(x1, x2, . . . , xn) · (y1, y2, . . . , yn) = x1y1 + x2y2 + · · ·+ xnyn =
n∑

i=1

xiyi.

Note. We know from the properties of dot products on Rn from Linear Algebra

(MATH 2010) that it is symmetric x · y = y · x, non-degenerate x · y = 0 for

all y ∈ Rn implies x = 0, and a bilinear form (i.e., linear in each variable). See

“Theorem 1.3. Properties of Dot Products” in my online Linear Algebra notes for

1.2. The Norm and Dot Product.

Definition. The Lorentz metric on R4 is defined as the inner product

x · y = (x0, x1, x2, x3) · (y0, y1, y2, y3) = x0y0 − x1y1 − x2y2 − x3y3.

Notice that this gives x ·x = (x0)2− (x1)2− (x2)2− (x3)2. The geometry of R4 with

the Lorentz metric is explored in “IX. 6. An Example of Lie Group Geometry.”

http://faculty.etsu.edu/gardnerr/2010/c1s2.pdf
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Definition. The determinant metric on R4 is defined as the inner product

x · y = (x1, x2, x3, x4) · (y1, y2, y3, y4) =
1

2
(x1y4 + x4y1)− 1

2
(x3y2 + x2y3).

Notice that this gives

x · x = det

 x1 x2

x3 x4

 = x1x4 − x2x3.

Definition IV.1.04. In a vector space X with metric tensor G, the length of

x ∈ X is |x|G =
√

x · x.

Note. If metric G is not positive definite, then |x|G will be complex. Then we

need to explore branches of the square root function (just as we do in the real

setting where “
√

x” denotes the positive square root when x > 0). Since we will

only consider real valued inner products, we only need to agree on the value of
√

x

for x < 0. We take this as i
√
|x|.

Note/Definition. With the Lorentz metric (tensor), we have the lengths

|(1, 0, 0, 0)| = 1, |(1, 1, 0, 0, 0)| = |(1, 0, 1, 0, 0)| = |(1, 0, 0, 1)| = 0,

|(0, 1, 0, 0)| = |(0, 0, 1, 0)| = |(0, 0, 0, 1)| =
√
−1 = i.

In special relativity, we consider spacetime as a collection of points (as opposed

to vectors) called events and use the Lorentz metric tensor to measure distances

between two points using “proper time τ” as

(∆τ)2 = (x0 − y0)2 − (x1 − y1)2 − (x2 − y2)2 − (x3 − y3)2.
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The quantity (∆τ)2 is called the interval associated with events (x0, x1, x2, x3) and

(y0, y1, y2, y3). If (∆τ)2 > 0 then the events are separated by more time than

space and the interval is timelike. If (∆τ)2 < 0 then the events are separated by

more space than time and the interval is spacelike. If ∆τ = 0 then the events are

equally separated in time and in space and the interval is lightlike. An inertial

observer (that is, an observer that is not accelerating) can be present at two events

separated by a timelike interval; there is enough time separation to travel over

the time separation. A photon traveling at the speed of light can be present at

two events separated by a lightlike interval (but an observer cannot do this since

by one of the Principles of Relativity, an observer must have a velocity less than

that of light). Neither an inertial observer nor a photon can be present at two

events separated by a spacelike interval; there is too much space separation to

travel over during the amount of time in the time separation. See my online notes

for Differential Geometry (MATH 5310) for 2.6. Invariance of the Interval. We use

a similar language here to describe elements of R4 using the Lorentz metric tensor

Here we are considering, in a sense, separation from the zero vector. For x ∈ R4

we say:

x is timelike if x · x > 0,

x is spacelike if x · x < 0,

x is lightlike (or null) if x · x = 0.

Example III.1.05. In order to draw light cones, we consider some examples

similar to R4 under the Lorentz metric tensor. Let H2 = R2 with the metric tensor

(x0, x1) · (y0, y1) = x1y0 − x1y1. Let H3 = R3 with metric tensor (x0, x1, x2) ·

http://faculty.etsu.edu/gardnerr/5310/5310pdf/dg2-6.pdf
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(y0, y1, y2) = x0y0 − x1y1 − x2y2. The null vectors in H2 are of the form (x, x)

and (x,−x). The null vectors in H2 are of the form (x0, x1, x2) where (x0)2 =

(x1)2 + (x2)2. This gives the light cones, timelike vectors, and spacelike vectors as

follows (Figure 1.3 from page 69).

Note. We now define the familiar idea of a “traditional” norm on a vector space

and consider some of its properties.

Definition IV.1.06. A norm on a vector space X is a function ‖ · ‖ : X → R such

that for all x,y ∈ X and a ∈ R:

(N i) ‖x‖ = 0 implies x = 0.

(N ii) ‖xa‖ = |a|‖x‖.

(N iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (The Triangle Inequality).

A partial norm on a vector space X is a function ‖ · ‖ : X → R such that for all
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x ∈ X and a ∈ R,

(N′ i) ‖x‖ ≥ 0.

(N′ ii) |xa‖ = |a|‖x‖.

Lemma IV.1.A. For ‖ · ‖ a norm on vector space X, we have ‖0‖ = 0 and for all

x ∈ X that ‖x‖ ≥ 0.

Note. Lemma IV.1.A shows that a norm satisfies Property (N′ i) in the definition

of partial norm, so that a norm is also a partial norm. This is Exercise IV.1.7(a).

Definition. On an inner product space (X,G) (remember that we take inner

products to be nonnegative), define the norm induced by G as |x| = ‖x‖G =
√

x · x.

For metric vector space (X,G′) (where G′ may be indefinite), define the partial

norm ‖ · ‖G′ as ‖x‖G′ =
√
|G′(x,x)|.

Note. In Exercise IV.1.7(b), it is to be shown that ‖ · ‖G is in fact a norm. In

Exercise IV.1.7(c) it is to be shown that ‖ · ‖G′ is in fact a partial norm. If G′ is an

inner product (and hence nonnegative by our convention) then length and partial

norm coincide: | · |G′ = ‖ · ‖G′.



IV.1. Metrics 8

Definition. In a metric vector space (X,G), we call ‖x‖G (which we simply denote

as ‖x‖) is the size of x. A unit vector x satisfies ‖x‖ = 1. A non-null vector is

normalized as x/‖x‖.

Lemma IV.1.07. Schwarz’s Inequality.

In any inner product space (X,G) (with positive definite G) we have for all x,y ∈

X that x · y ≤ |x||y| with equality for nonzero x and y if y = xa for some a ∈ R,

and if y = xa for some a ≥ 0 then equality holds.

Note. We now consider some geometry based on orthogonality and perp spaces.

Definition IV.1.08. Two vectors x and y in a metric vector space are orthogonal

if x · y = 0. For any x ∈ X, the set x⊥ of vectors orthogonal to it is the perp space

(or orthogonal complement) of x (or sometimes “of the span of x”).

Note. It is clear that x⊥ actually is a subspace of X (we only need to show closure

under linear combinations). If a metric vector space is in fact an inner product

space then the perp space is as it is in Rn. But in an indefinite metric space (such

as Lorentz space with the Lorentz metric tensor), perp spaces can behave in new

ways. Since H3 is 3 dimensional and x⊥ is a subspace of H3, then two linearly

independent vectors in x⊥ determine x⊥. The following is Figure 1.5 from page 72.
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• In Figure IV.1.5(b), we have x = (1, 0, 0). Then (0, 1, 0) and (0, 0, 1) are in x⊥

and are linearly independent. So x⊥ = span{(0, 1, 0), (0, 0, 1)} which is (with

all vectors in “standard position”) the x1x2-plane.

• In Figure IV.1.5(f), we have x = (0, 1, 0). Then (1, 0, 0) and (0, 0, 1) are in x⊥

and are linearly independent. So x⊥ = span{)1, 0, 0), (0, 0, 1)} which is the

x0x2-plane.

• In Figure IV.1.5(d), we have x = (1, 1, 0). Then (1, 1, 0) and (0, 0, 1) are in x⊥ and

are linearly independent. So x⊥ = span{(1, 1, 0), (0, 0, 1)} = {(x0, x1, x2) ∈

H3 | x0 = x1}. This is an unexpected result where x ∈ x⊥.
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• In Figure IV.1.5(c), say x is the future light cone of (0, 0, 0), say x = (2, 1, 0).

Then (1, 2, 0) and (0, 0, 1) are in x⊥ and are linearly independent. So x⊥ =

span{(1, 2, 0), (0, 0, 1)} = {(x0, x1, x2) ∈ H3 | 2x0 = x1}.

• In Figure IV.1.5(e), we have x outside of both the future light cone and the

past light cone of (0, 0, 0), say x = (1, 2, 0). Then (1, 1/2, 0) and (0, 0, 1) are

in x⊥ and are linearly independent. So x⊥ = span{(1, 1/2, 0), (0, 0, 1)} =

{(x0, x1, x2) ∈ H3 | x0 = 2x1}.

We can think of Figures IV.1.5(b), (c), (d), (e), (f) as a “movie” as x rotates from

vertical to horizontal. The respective perp spaces then rotate from horizontal to

vertical (meeting up with x at the 45◦ mark).

Note. In a metric vector space X we can for x ∈ X define x∗ ∈ X∗ such that

x∗(y) = x · y for y ∈ X. Notice that ker(x∗) = x⊥. Conversely, if f ∈ X∗ then

f(x) = fix
i where f = fib

i (by Note III.1.A), and so ker(f) = x⊥ where we take

x = xibi = f1b1 + f2b2 + · · · + fnbn. As the text says: “A metric tensor, then,

gives us a geometrical way of changing from contravariant vector [such as x∗ and

f ] to covariant ones [such as x and f1b1 + f2b2 + · · ·+ fnbn] and vice versa.” See

page 73.

Theorem IV.1.09. For any non-degenerate bilinear form F on a vector space X,

the map F↓ : X → X∗ defined as F↓(x) = x∗ where x∗(y) = F(x,y), is linear and

an isomorphism.
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Note IV.1.A. Since F↓ : X → X∗ of Theorem IV.1.09 is one to one and onto,

then (F↓)
−1 = F↑ where F↑ : X∗ → X. In particular, in a metric vector space

(X,G), we have G↓ : X → X∗ and G↑ : X∗ → X as mappings induced by the

metric tensor G.

Note. The next result shows that a non-degenerate bilinear form on X induces a

non-degenerate bilinear form on X∗.

Lemma IV.1.11. A non-degenerate bilinear form F on a vector space X induces

a bilinear form F∗ on X∗ by

F∗(f ,g) = F(F↑(f),F↑(g))

which is non-degenerate. In addition, if F is symmetric/anti-symmetric/positive

definite/negative definite/indefinite then so is F∗.

Note. As a special case of Lemma IV.1.11, we can take F as a metric tensor (i.e.,

a symmetric non-degenerate bilinear form) or an inner product (i.e., a positive or

negative definite metric tensor). This gives the following.

Corollary IV.1.12. A metric tensor G on X induces a metric tensor G∗ on X∗.

An inner product G on X induces an inner product G∗ on X∗.
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