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IV.2. Maps

Note. In this section we consider orthogonal projections, isometries, and adjoints.

Theorem IV.2.01. Let S be a non-degenerate subspace of a metric vector space

X. Then there is a unique linear operator P : X → S such that (x − Rx) · y = 0

for all y ∈ S.

Definition. The linear operator R : X → X of Theorem IV.2.01 is the orthogonal

projection onto S. For x ∈ X, Rx is the component of x in S and x − Px is the

component of x orthogonal to S.

Corollary IV.2.02. The projection operator P onto S is idempotent. That is,

P(Px) = Px for all x ∈ X.

Note. In Linear Algebra (MATH 2010) we consider projections of a vector b onto

a subspace W of Rn, denoted projW (b). See my online notes for Linear Algebra on

“6.1. Projections” where this is addressed computationally and geometrically. This

is addressed in the setting of linear mappings (that is, matrices) in “6.4 Projection

Mappings”. If W = span(a1, a2, . . . , ak) is a k-dimensional subspace of Rn and A

is the matrix with the vectors a1, a2, . . . , ak as its columns, then the matrix P =

A(AtA)−1At is the matrix that produces projections onto W . That is, projX(b) =

Pb. This is the same situation we have here when we consider (X, G) = (R, 〈·, ·〉).

http://faculty.etsu.edu/gardnerr/2010/c6s1.pdf
http://faculty.etsu.edu/gardnerr/2010/c6s4.pdf
http://faculty.etsu.edu/gardnerr/2010/c6s4.pdf
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Note. In Rn orthogonality is as expected, and so are projections. However, in H2

orthogonality is somewhat strange (as illustrated in the larger H3 in Figure IV.1.5).

But we still have x − Px as orthogonal to subspaces. A subspace of H2 is a line

through the origin (when all vectors are placed in standard position with their tails

at the origin). For X = {(x0, 0) ∈ H2 | x0 ∈ R} a subspace of H2 and projection

onto it are as they are in R2 since the space of all vectors perpendicular to S is

S⊥ = {(0, x1) ∈ H2 | x1 ∈ R}. Similarly, projection onto S⊥ are as they are in

R2. However, on S = {(x0, x1) ∈ H2 | x0 = 2x1} we have the space of all vectors

perpendicular to S as S⊥ = {(x0, x1) ∈ H2 | x1 = 2x0} and so x − Px ∈ S⊥ when

P projects onto S. We then get geometrically:

Note. We have referred to a perp space already, but we have not yet formally

defined it. We do so now.

Definition IV.2.03. The kernel of the orthogonal projection onto a non-degenerate

subspace S of X is called the orthogonal complement of S in X, denoted S⊥.



IV.2. Maps 3

Note. The next result is a common geometric result when speaking of subspaces

and orthogonal complements.

Lemma IV.2.04. For any non-degenerate subspace S of X, each x ∈ X can be

uniquely expressed as x = s + t where x ∈ S and f ∈ S⊥.

Definition. For S a non-degenerate subspace of X and S⊥ the orthogonal com-

plement of S, we say that X is the direct sum of S and S⊥, denoted X = S ⊕ S⊥.

Note. For X = S ⊕ S⊥ we see be Lemma IV.2.04 that each x ∈ X can be written

as x = s+ t for unique s ∈ S and t ∈ S⊥. The proof of the following is to be given

in Exercise IV.2.1(c).

Corollary IV.2.05. If dim(S) = k and dim(X) = n, then dim(S⊥) = n − k.

Corollary IV.2.06. If G is non-degenerate on S, it is non-degenerate on S⊥.

Note. Since G(x,y) = x · y is a metric tensor on vector space X, then G (and

the dot product) determine “distances,” so if a linear map preserves dot products

(and values of G) then it preserves ‘distances.” We therefore have the following

definition.
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Definition IV.2.07. A linear map A : X → Y between metric vector spaces is an

isometry if it is onto (surjective) and G(Ax,Ax′) = (Ax)·(Ax′) = G(x,x′) = x·x′

for all x,x′ ∈ X.

Note. An isometry is also called orthogonal (or unitary). This terminology (espe-

cially “orthogonal”) is due to the fact that in (Rn, 〈·, ·〉) such linear transformations

are represented by matrices with orthonormal rows and orthonormal columns. See

“Theorem 6.5. Characterizing Properties of an Orthogonal Matrix” in my online

Linear Algebra notes for 6.3. Orthogonal Matrices. This result also shows the

relationship A−1 = At, which we establish in our setting in Lemma IV.2.09.

Note. Let A be a linear operator on a metric vector space (X,G). Denote AT =

G↑A
∗G↓. Notice that we have the diagram:

X∗

6

X∗�

X
?

X -

A∗

A

G↑ G↓

So AT : X → X, as it should. So for any x ∈ X we have AT (x) = G↑A
∗G↓(x)

or (AT (x) = G↑(A
∗(G↓(x))). Applying G↓ to both sides of this equation (and

observing that G↓ = (G↑)
−1 (see the Note after Theorem IV.1.09) we have

G↓(A
T (x)) = G↓(G↑(A

∗(G↓(x)))) = A∗(G↓(x)).

Now A∗G↓(x)) ∈ X∗, so we can apply it to any y ∈ X, and we have

G↓(A
T (x))(y = A∗(G↓(x))(y). (∗)

http://faculty.etsu.edu/gardnerr/2010/c6s3.pdf
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By the definition of dual map (form Section III.1), A∗(f) = f ◦ A for f ∈ X∗, so

with G↓(x) ∈ X∗ we see that A∗(G↓(x)) = G↓(x)(A). Then from (∗) we have

G↓(A
T (x))(y) = G↓(x)(Ay). (∗∗)

Now by Theorem IV.1.09, G↓(x) = x∗ where x∗(y = G(x,y) = x·y, so G↓(A
T (x))(y =

AT (x) · y and G↓(x)(Ay) = x ·Ay, So (∗∗) implies that ATx · y = x ·Ay for all

x,y ∈ X. We use this property as the formal definition of AT .

Definition IV.2.08. The adjoint AT of a linear operator A on a metric vector

space (X,G) is defined by the equation ATx ·y = x ·Ay for all x,y ∈ X. (We see

from the previous not that AT exists, is unique, and is given by AT = G↑A
∗G↓.)

An operator A on X is self adjoint if AT = A.

Lemma IV.2.A. Properties of Adjoint.

For A and B linear operators on a metric vector space (X, G) we have:

(a) IT = I where I is the identity operator.

(b) (AT )T = A.

(c) (AB)T = BTAT .

Lemma IV.2.09. An operator A on a metric vector space (X,G) is orthogonal

if and only if ATA = I.
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Note. Dodson and Poston states the following without proof. Your humble instruc-

tor thinks this could use some justification (we don’t necessarily have commutivity

and can’t immediately conclude that AAT = ATA.

Corollary IV.2.10. A linear operator A on a metric vector space (X,G) is

orthogonal if and only if AT is orthogonal.

Note. Orthogonal projections are examples of self adjoint linear operators, as we

now show.

Lemma IV.2.11. Orthogonal projection P onto a non-degenerate subspace S of

a metric vector space X is a self adjoint operator.
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