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IV.3. Coordinates

Note. In this section we express G(x,y) in a metric vector space (X,G) in terms

of coordinates with respect to an ordered basis. This will give us a matrix of metric

coefficients [gij]. We show that every metric vector space has an orthonormal basis

(in Theorem IV.3.05). In “Sylvester’s Law of Inertia” (Corollary IV.3.10) we see

that, in a sense, every symmetric bilinear form on a metric vector space behaves

similar to the Lorentz metric (in that it involves positive and negative coefficients).

Note IV.3.A. Let (X,G) be a metric vector space. We denote, as usual, G(x,y) =

x·y. Let β = {b1,b2, . . . ,bn} be an ordered basis for X. Suppose x = (x1, x2, . . . , xn)

and y = (y1, y2, . . . , yn). Since G is bilinear, then with Einstein’s summation con-

vention we have:

G(x,y) = G(xibi, y
jbj) = xiyjG(bi,bj).

Note. Since G↓ : X → X∗ is an isomorphism by Theorem IV.1.09, then it

maps ordered basis β = {b1,b2, . . . ,bn} of X to an ordered basis of X∗, G↓β =

{G↓b1,G↓b2, . . . ,G↓bn}. Then the matrix that maps a coordinate vector v with

respect to β to a coordinate vector w with respect to G↓β (where w = G↓v, is

[G↓]
G↓β
β = [δij] (here we use double lower indices for Kronecker’s delta function be-

cause the coordinate vectors will have components represented with upper indices).
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Note IV.3.B. Let β∗ = {b1,b2, . . . ,bn} be the dual basis (for X∗) of β. Then

by definition (see Section III.1), bj : X → R satisfies bj(aibi) = aj. For f ∈ X∗

where f − fjb
j = f(bj)b

j. For x ∈ X, we have G↓(x) ∈ X∗ so (with f = G↓(x)

we have G↓(x) = G↓(x)(bj)b
j. But G↓(x) = x∗ where x∗(y) = G(x,y) by the

definition of G↓ (see Theorem IV.1.09), so G↓(x)(bj) = G(x,bj) = gikx
iyk where

yk =

 0 if k 6= j

1 if k = j
(by Note IV.3.A). That is, G↓(x)(j) = gijx

i and this is the jth

component of G↓(x) with respect to β∗. Hence G↓(x) = gijx
ibj. We now make

a notational convention; we may denote vector x = (x1, x2, . . . , xn) as xi. With

this notation, we write G↓(x) = gijx
ibj = gijx

i ∈ X∗ (notice that summation is

done over i so that index j determines the jth component of G↓(x) with respect

to β∗). Also, G↓(x) = gijx
j. So with x = (x1, x2, . . . , xn) with respect to β then

G↓(x) = (g1jx
j, g2jx

j, . . . , gnjx
j) with respect to β∗ and hence the matrix that

converts x with respect to β to G↓(x) with respect to β∗ is

[G↓]
β∗

β =


g11 g12 . . . g1n

g21 g22 . . . g2n

...
... . . . ...

gn1 gn2 . . . gnn

 = [gij].

Now G↑ is the inverse of G↓ so [G↑]
β
β∗ is the inverse of [G↓]

β∗

β . Let [G↑]
β
β∗ = [gij].

Then gijgjk = δi
k and gkig

ij = δj
k.

Note IV.3.C. If x,y ∈ X∗ where x = xi and y = yi with respect to β∗ then

G∗(x,y) = G(G↓x,G↑y) see Lemma IV.1.11

= G(gikxkbi, g
j`y`bj) since [gij] converts x and y coordinate vectors
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with respect to β∗ to G↑x and G↑y coordinate vectors

with respect to β

= gikxkg
j`y`G(bi,bj) since G is bilinear

= gijg
j`xkg

j`y` since gij = G(bi,bj)

= (gijg
j`)gikxky`

= δ`
ig

ikxky` since [gij] and [gj`] are inverses

= g`kxky` − gk`xky` since gk` = g`k

= gijxiyj = xig
ijyj.

In particular, for x = bi and y = bj (so xi = yj = 1 and all other coordinates of x

and y with respect to β∗ are 0) we have G∗(x,y) = G∗(bi,bj) = gij. That is, the

components of G∗ with respect to β∗ are the gij. In terms of vectors and matrices,

we can write

G∗(x,y) = [x1 x2 · · · xn]


g11 g12 · · · g1n

g21 g22 · · · g2n

...
... . . . ...

gn1 gn2 · · · gnn

 =


y1

y2

...

yn

 .

Note. We now shift out attention to finding a “nice” (i.e., orthonormal) basis for

a matrix vector space. This should then yield nice matrices [gij] and [gij].

Definition IV.3.03. An orthogonal set in a metric vector space X is a subset S

of X where for any x,y ∈ S we have x · x 6= 0, y · y = 0, and x · y = 0. An

orthonormal set in X is an orthogonal set of unit vectors; i.e. x · x = 1 for all

x ∈ S. An orthonormal basis for X is a basis which is an orthonormal set.
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Lemma IV.3.04. For β = {b1,b2, . . . ,bn} an orthonormal basis for metric vector

space (X,G) in β coordinates we have gij = ±δij.

Note. We know that every finite dimensional vector space has an orthonormal

basis (since an n-dimensional vector space is isomorphic to Rn by the Fundamental

Theorem of Finite Dimensional Vector Spaces and “orthonormal” is based on the

usual dot product in Rn). We wish to establish this result for metric vector space

(X,G) where “orthonormal” is based on metric tensor G. The proof will use the

Gram-Schmidt Process (though not by name). We first need a lemma.

Lemma IV.3.06. Nontrivial metric vector space (X,G) possesses at least one

non-null vector.

Theorem IV.3.05. Every metric vector space (X,G) possess at least one or-

thonormal basis.

Note. By convention, we order an orthonormal basis b1,b2, . . . ,bn so that bi ·bj = +1 if i ≤ k

−1 if i > k.
With respect to this ordered basis,

x · y = x1y1 + x2y2 + · · ·+ xkyk − xk+1yk+1 − xk+2yk+2 − · · · − xnyn.

The nest result show that parameter k does not depend on the choice of the basis.
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Theorem IV.3.08. For any two orthonormal ordered bases β = {b1,b2, . . . ,bn}

and β∗ = {b′
1,b

′
2, . . . ,b

′
n} for a metric vector space (X,G) with

bi · bj =

 +1 if i ≤ k

−1 if i > k
and b′

i · b′
j =

 +1 if i ≤ `

−1 if i > `,

we have k = `.

Note. We now see that in a metric vector space the number of “negative coeffi-

cients” and the number of “positive coefficients” in G (or in dot products or norms)

is unique. This gives the following.

Corollary IV.3.09. Let (X,G) be a matrix vector space with some basis β =

{b1,b2, . . . ,bn}. Let 0 ≤ k ≤ n be orthonormal such that bi ·bj =

 +1 if i ≤ k

−1 if i > k.

Then the quantity
∑n

i=1 gii = k(+1) + (n− k)(−1) = 2k − n is independent of the

choice of the orthonormal basis.

Definition. The quantity 2k − n of Corollary IV.3.09 is the signature of G.

Note. The following corollary shows that a result similar to Theorem IV.3.08 holds

for any symmetric bilinear form.
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Corollary IV.3.10. Sylvester’s Law of Inertia.

Let (X,G) be a metric vector space. For any symmetric bilinear form F : X×X →

R, there is a choice of basis for which F has the form

F(x1b1 + x2b2 + · · ·+ xnbn, x
1b1 + x2b2 + · · ·+ xnbn)

= (x1)2 + (x2)2 + · · ·+ (xn)2 − (xk+1)2 − (xk+2)2 − · · · − (xk+`)2

where k + ` ≤ n. Unless s or ` is zero, the subspace V + spanned by the basic

vectors with F(bi,bj) = +1 depends on the choice of basis; so does the subspace

V − spanned by those with F(bi,bi) = −1. However, V 0, spanned by those with

F(bi,bj) = 0, depends only on F, as do k and `.

Lemma IV.3.11. Let β = {b1,b2, . . . ,bn} be a basis for (X,G). Then the dual

basis to β, β∗ = {b1,b2, . . . ,bn}, is an orthonormal basis in the dual metric G∗ on

X∗ if and only if β is an orthonormal basis for X.

Note. The proof of the following is left as Exercise IV.3.3.

Corollary IV.3.12. The signature of G∗ equals the signature of G.

Note. We now turn our attention to change of coordinate matrices (from one basis

to another), first relating such matrices for operators A and AT . Recall that we

use “t” to represent the transpose of a matrix and “T” to represent the adjoint of

a linear operator.
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Lemma IV.3.13. If A is a linear operator on an inner product space (X,G), then

[AT ]ββ = ([A]ββ)
t with respect to any orthonormal basis β = {b1,b2, . . . ,bn}.

Note. Lemma IV.3.13 gives the matrix representation of the adjoint of A in terms

of the matrix representation of A (and the two matrices are related by transpose).

If G is indefinite, the relationship is more complicated.

Lemma IV.3.14. If A is a linear operator on a metric vector space (X,G) then

with respect to orthonormal basis {b1,b2, . . . ,bn} we have

[AT ]ij =

(
gjj

gii

)
[A]ji =

(
gjj

gii

)
[[A]t]ij

for 1 ≤ i, j ≤ n, where [A]ij = aij = ai
j is the entry in the ith row and jth column

of [A]ββ and there is no summation over i and j (though the Einstein convention

implies it on the right hand side of the above equation).

Note. Since {b1,b2, . . . ,bn} is an orthonormal basis in Lemma IV.2.14, then

gii = bi · bi = ±1 for each i. So the entries of [AT ] are the same is absolute value

as the entries of [A]t. In fact, if Q is any linear operator on a metric vector space

of dimension n and signature σ = 2k− n then Q has a matrix representation with

respect to β of the partitioned form

[Q] =

 A B

C D


(where A is k × k, B is k × (n− k), C is (n− k)× k, and D is (n− k)× (n− k)),

where the first k columns are timelike (i.e., gii = bi · bi = +1 for 1 ≤ i ≤ k) and
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the last n− k columns are spacelike (i.e., gii = bi · bi = −1 for k + 1 ≤ i ≤ n). So
gii

gjj
= +1 for (1) 1 ≤ i ≤ k and 1 ≤ j ≤ n, or (2) k + 1 ≤ i ≤ n and k + 1 ≤ j ≤ n,

and
gii

gjj
= −1 for (1) 1 ≤ i ≤ k and k + 1 ≤ j ≤ n or (2) k + 1 ≤ i ≤ n and

1 ≤ j ≤ k. So the matrix representation of QT has partitioned form

[QT ] =

 At −Ct

−Bt Dt

 .

Corollary IV.3.15. A linear operator A on a metric vector space is self-adjoint

if and only if, with respect to an orthonormal basis, its matrix [aij = [ai
j] satisfies

aij = ai
j =

gjj

gii
aj

i =
gjj

gii
aij

for each i and j (there is not summation with respect to i or j here).

Note. If we apply Corollary IV.3.15 to an inner product space (where G is positive

definite [or maybe negative definite]) then we see that [A] and [AT ] are just trans-

poses of each other. So if A is self-adjoint then matrix [A] is symmetric. (This is

based on the fact that we only consider real vector spaces. If we considered com-

plex vector spaces then we would need to replace the transpose of a matrix with

its conjugate transpose. See “Definition 9.2. Conjugate Transpose and Hermetian

Adjoint” in my online Linear Algebra notes on 9.2. Matrices and Vector Spaces

with Complex Scalars.)

http://faculty.etsu.edu/gardnerr/2010/c9s2.pdf
http://faculty.etsu.edu/gardnerr/2010/c9s2.pdf
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Lemma IV.3.16. A linear operator A on an inner product space is orthogo-

nal if and only if with respect to an orthonormal basis it has a matrix whose

columns (respectively, rows) regarded as column (respectively, row) vectors form

an orthonormal set in the standard inner product on Rn.

Note. Since Rn is an inner product space with the usual dot product and every

n× n matrix determines a linear operator on Rn, then we can use Lemma IV.3.16

to establish the following result on matrices.

Corollary IV.3.17. The rows of a matrix are an orthonormal set (in the standard

inner product) if and only if the columns are.
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