IV.3. Coordinates

Note. In this section we express $\mathbf{G}(\mathbf{x}, \mathbf{y})$ in a metric vector space (X, \mathbf{G}) in terms of coordinates with respect to an ordered basis. This will give us a matrix of metric coefficients $[g_{ij}]$. We show that every metric vector space has an orthonormal basis (in Theorem IV.3.05). In "Sylvester's Law of Inertia" (Corollary IV.3.10) we see that, in a sense, every symmetric bilinear form on a metric vector space behaves similar to the Lorentz metric (in that it involves positive and negative coefficients).

Note IV.3.A. Let (X, \mathbf{G}) be a metric vector space. We denote, as usual, $\mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$. Let $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ be an ordered basis for X. Suppose $\mathbf{x} = (x^1, x^2, \dots, x^n)$ and $\mathbf{y} = (y^1, y^2, \dots, y^n)$. Since **G** is bilinear, then with Einstein's summation convention we have:

$$\mathbf{G}(\mathbf{x}, \mathbf{y}) = \mathbf{G}(x^i \mathbf{b}_i, y^j \mathbf{b}_j) = x^i y^j \mathbf{G}(\mathbf{b}_i, \mathbf{b}_j).$$

Note. Since $\mathbf{G}_{\downarrow} : X \to X^*$ is an isomorphism by Theorem IV.1.09, then it maps ordered basis $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ of X to an ordered basis of $X^*, \mathbf{G}_{\downarrow}\beta = {\mathbf{G}_{\downarrow}\mathbf{b}_1, \mathbf{G}_{\downarrow}\mathbf{b}_2, \dots, \mathbf{G}_{\downarrow}\mathbf{b}_n}$. Then the matrix that maps a coordinate vector \mathbf{v} with respect to β to a coordinate vector \mathbf{w} with respect to $\mathbf{G}_{\downarrow}\beta$ (where $\mathbf{w} = \mathbf{G}_{\downarrow}\mathbf{v}$, is $[\mathbf{G}_{\downarrow}]_{\beta}^{\mathbf{G}_{\downarrow}\beta} = [\delta_{ij}]$ (here we use double lower indices for Kronecker's delta function because the coordinate vectors will have components represented with upper indices). Note IV.3.B. Let $\beta^* = \{\mathbf{b}^1, \mathbf{b}^2, \dots, \mathbf{b}^n\}$ be the dual basis (for X^*) of β . Then by definition (see Section III.1), $\mathbf{b}^j : X \to \mathbb{R}$ satisfies $\mathbf{b}^j(a^i\mathbf{b}_i) = a^j$. For $\mathbf{f} \in X^*$ where $\mathbf{f} - f_j\mathbf{b}^j = \mathbf{f}(\mathbf{b}_j)\mathbf{b}^j$. For $\mathbf{x} \in X$, we have $\mathbf{G}_{\downarrow}(\mathbf{x}) \in X^*$ so (with $\mathbf{f} = \mathbf{G}_{\downarrow}(\mathbf{x})$ we have $\mathbf{G}_{\downarrow}(\mathbf{x}) = \mathbf{G}_{\downarrow}(\mathbf{x})(\mathbf{b}_j)\mathbf{b}^j$. But $\mathbf{G}_{\downarrow}(\mathbf{x}) = \mathbf{x}^*$ where $\mathbf{x}^*(\mathbf{y}) = \mathbf{G}(\mathbf{x}, \mathbf{y})$ by the definition of \mathbf{G}_{\downarrow} (see Theorem IV.1.09), so $\mathbf{G}_{\downarrow}(\mathbf{x})(\mathbf{b}_j) = \mathbf{G}(\mathbf{x}, \mathbf{b}_j) = g_{ik}x^iy^k$ where $y^k = \begin{cases} 0 \text{ if } k \neq j \\ 1 \text{ if } k = j \end{cases}$ (by Note IV.3.A). That is, $\mathbf{G}_{\downarrow}(\mathbf{x}) = g_{ij}x^i\mathbf{b}^j$. We now make a notational convention; we may denote vector $\mathbf{x} = (x^1, x^2, \dots, x^n)$ as x^i . With this notation, we write $\mathbf{G}_{\downarrow}(\mathbf{x}) = g_{ij}x^i\mathbf{b}^j = g_{ij}x^i \in X^*$ (notice that summation is done over i so that index j determines the jth component of $\mathbf{G}_{\downarrow}(\mathbf{x})$ with respect to β^*). Also, $\mathbf{G}_{\downarrow}(\mathbf{x}) = g_{ij}x^j$. So with $\mathbf{x} = (x^1, x^2, \dots, x^n)$ with respect to β then $\mathbf{G}_{\downarrow}(\mathbf{x}) = (g_{1j}x^j, g_{2j}x^j, \dots, g_{nj}x^j)$ with respect to β^* and hence the matrix that converts \mathbf{x} with respect to β to $\mathbf{G}_{\downarrow}(\mathbf{x})$ with respect to β^* is

$$\left[\mathbf{G}_{\downarrow} \right]_{\beta}^{\beta^{*}} = \begin{bmatrix} g_{11} & g_{12} & \dots & g_{1n} \\ g_{21} & g_{22} & \dots & g_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ g_{n1} & g_{n2} & \dots & g_{nn} \end{bmatrix} = [g_{ij}]$$

Now \mathbf{G}_{\uparrow} is the inverse of \mathbf{G}_{\downarrow} so $[\mathbf{G}_{\uparrow}]^{\beta}_{\beta^{*}}$ is the inverse of $[\mathbf{G}_{\downarrow}]^{\beta^{*}}_{\beta}$. Let $[\mathbf{G}_{\uparrow}]^{\beta}_{\beta^{*}} = [g^{ij}]$. Then $g^{ij}g_{jk} = \delta^{i}_{k}$ and $g_{ki}g^{ij} = \delta^{j}_{k}$.

Note IV.3.C. If $\mathbf{x}, \mathbf{y} \in X^*$ where $\mathbf{x} = x_i$ and $\mathbf{y} = y_i$ with respect to β^* then

$$\mathbf{G}^{*}(\mathbf{x}, \mathbf{y}) = \mathbf{G}(\mathbf{G}_{\downarrow}\mathbf{x}, \mathbf{G}_{\uparrow}\mathbf{y}) \text{ see Lemma IV.1.11}$$
$$= \mathbf{G}(g^{ik}x_{k}\mathbf{b}_{i}, g^{j\ell}y_{\ell}\mathbf{b}_{j}) \text{ since } [g^{ij}] \text{ converts } \mathbf{x} \text{ and } \mathbf{y} \text{ coordinate vectors}$$

=

=

_

=

=

 $= g^{ij}x_iy_j = x_ig^{ij}y_j.$

with respect to
$$\beta^*$$
 to $\mathbf{G}_{\uparrow} \mathbf{x}$ and $\mathbf{G}_{\uparrow} \mathbf{y}$ coordinate
with respect to β
 $g^{ik} x_k g^{j\ell} y_\ell \mathbf{G}(\mathbf{b}_i, \mathbf{b}_j)$ since \mathbf{G} is bilinear
 $g_{ij} g^{j\ell} x_k g^{j\ell} y_\ell$ since $g_{ij} = \mathbf{G}(\mathbf{b}_i, \mathbf{b}_j)$
 $(g_{ij} g^{j\ell}) g^{ik} x_k y_\ell$
 $\delta_i^{\ell} g^{ik} x_k y_\ell$ since $[g_{ij}]$ and $[g^{j\ell}]$ are inverses
 $g^{\ell k} x_k y_\ell - g^{k\ell} x_k y_\ell$ since $g^{k\ell} = g^{\ell k}$

In particular, for $\mathbf{x} = \mathbf{b}^i$ and $\mathbf{y} = \mathbf{b}^j$ (so $x^i = y^j = 1$ and all other coordinates of \mathbf{x} and \mathbf{y} with respect to β^* are 0) we have $\mathbf{G}^*(\mathbf{x}, \mathbf{y}) = \mathbf{G}^*(\mathbf{b}_i, \mathbf{b}_j) = g^{ij}$. That is, the components of \mathbf{G}^* with respect to β^* are the g^{ij} . In terms of vectors and matrices, we can write

$$\mathbf{G}^{*}(\mathbf{x}, \mathbf{y}) = \begin{bmatrix} x_{1} \ x_{2} \ \cdots \ x_{n} \end{bmatrix} \begin{bmatrix} g_{11} \ g_{12} \ \cdots \ g_{1n} \\ g_{21} \ g_{22} \ \cdots \ g_{2n} \\ \vdots \ \vdots \ \ddots \ \vdots \\ g_{n1} \ g_{n2} \ \cdots \ g_{nn} \end{bmatrix} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}.$$

Note. We now shift out attention to finding a "nice" (i.e., orthonormal) basis for a matrix vector space. This should then yield nice matrices $[g^{ij}]$ and $[g_{ij}]$.

Definition IV.3.03. An orthogonal set in a metric vector space X is a subset S of X where for any $\mathbf{x}, \mathbf{y} \in S$ we have $\mathbf{x} \cdot \mathbf{x} \neq 0$, $\mathbf{y} \cdot \mathbf{y} = 0$, and $\mathbf{x} \cdot \mathbf{y} = 0$. An orthonormal set in X is an orthogonal set of unit vectors; i.e. $\mathbf{x} \cdot \mathbf{x} = 1$ for all $\mathbf{x} \in S$. An orthonormal basis for X is a basis which is an orthonormal set.

vectors

Lemma IV.3.04. For $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ an orthonormal basis for metric vector space (X, \mathbf{G}) in β coordinates we have $g_{ij} = \pm \delta_{ij}$.

Note. We know that every finite dimensional vector space has an orthonormal basis (since an *n*-dimensional vector space is isomorphic to \mathbb{R}^n by the Fundamental Theorem of Finite Dimensional Vector Spaces and "orthonormal" is based on the usual dot product in \mathbb{R}^n). We wish to establish this result for metric vector space (X, \mathbf{G}) where "orthonormal" is based on metric tensor \mathbf{G} . The proof will use the Gram-Schmidt Process (though not by name). We first need a lemma.

Lemma IV.3.06. Nontrivial metric vector space (X, \mathbf{G}) possesses at least one non-null vector.

Theorem IV.3.05. Every metric vector space (X, \mathbf{G}) possess at least one orthonormal basis.

Note. By convention, we order an orthonormal basis $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ so that $\mathbf{b}_i \cdot \mathbf{b}_j = \begin{cases} +1 & \text{if } i \leq k \\ -1 & \text{if } i > k. \end{cases}$ With respect to this ordered basis, $\mathbf{x} \cdot \mathbf{y} = x^1 y^1 + x^2 y^2 + \dots + x^k y^k - x^{k+1} y^{k+1} - x^{k+2} y^{k+2} - \dots - x^n y^n.$

The nest result show that parameter k does not depend on the choice of the basis.

Theorem IV.3.08. For any two orthonormal ordered bases $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ and $\beta^* = {\mathbf{b}'_1, \mathbf{b}'_2, \dots, \mathbf{b}'_n}$ for a metric vector space (X, \mathbf{G}) with

$$\mathbf{b}_i \cdot \mathbf{b}_j = \begin{cases} +1 \text{ if } i \le k \\ -1 \text{ if } i > k \end{cases} \text{ and } \mathbf{b}'_i \cdot \mathbf{b}'_j = \begin{cases} +1 \text{ if } i \le \ell \\ -1 \text{ if } i > \ell, \end{cases}$$

we have $k = \ell$.

Note. We now see that in a metric vector space the number of "negative coefficients" and the number of "positive coefficients" in \mathbf{G} (or in dot products or norms) is unique. This gives the following.

Corollary IV.3.09. Let (X, \mathbf{G}) be a matrix vector space with some basis $\beta = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$. Let $0 \le k \le n$ be orthonormal such that $\mathbf{b}_i \cdot \mathbf{b}_j = \begin{cases} +1 \text{ if } i \le k \\ -1 \text{ if } i > k. \end{cases}$ Then the quantity $\sum_{i=1}^n g_{ii} = k(+1) + (n-k)(-1) = 2k - n$ is independent of the choice of the orthonormal basis.

Definition. The quantity 2k - n of Corollary IV.3.09 is the *signature* of **G**.

Note. The following corollary shows that a result similar to Theorem IV.3.08 holds for any symmetric bilinear form.

Corollary IV.3.10. Sylvester's Law of Inertia.

Let (X, \mathbf{G}) be a metric vector space. For any symmetric bilinear form $\mathbf{F} : X \times X \to \mathbb{R}$, there is a choice of basis for which \mathbf{F} has the form

$$\mathbf{F}(x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{n}, x^{1}\mathbf{b}_{1} + x^{2}\mathbf{b}_{2} + \dots + x^{n}\mathbf{b}_{n})$$

= $(x^{1})^{2} + (x^{2})^{2} + \dots + (x^{n})^{2} - (x^{k+1})^{2} - (x^{k+2})^{2} - \dots - (x^{k+\ell})^{2}$

where $k + \ell \leq n$. Unless s or ℓ is zero, the subspace V^+ spanned by the basic vectors with $\mathbf{F}(\mathbf{b}_i, \mathbf{b}_j) = +1$ depends on the choice of basis; so does the subspace V^- spanned by those with $\mathbf{F}(\mathbf{b}_i, \mathbf{b}_i) = -1$. However, V^0 , spanned by those with $\mathbf{F}(\mathbf{b}_i, \mathbf{b}_j) = 0$, depends only on \mathbf{F} , as do k and ℓ .

Lemma IV.3.11. Let $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ be a basis for (X, \mathbf{G}) . Then the dual basis to β , $\beta^* = {\mathbf{b}^1, \mathbf{b}^2, \dots, \mathbf{b}^n}$, is an orthonormal basis in the dual metric \mathbf{G}^* on X^* if and only if β is an orthonormal basis for X.

Note. The proof of the following is left as Exercise IV.3.3.

Corollary IV.3.12. The signature of G^* equals the signature of G.

Note. We now turn our attention to change of coordinate matrices (from one basis to another), first relating such matrices for operators A and A^T . Recall that we use "t" to represent the transpose of a matrix and "T" to represent the adjoint of a linear operator.

Lemma IV.3.13. If A is a linear operator on an inner product space (X, \mathbf{G}) , then $[\mathbf{A}^T]^{\beta}_{\beta} = ([\mathbf{A}]^{\beta}_{\beta})^t$ with respect to any orthonormal basis $\beta = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}.$

Note. Lemma IV.3.13 gives the matrix representation of the adjoint of **A** in terms of the matrix representation of **A** (and the two matrices are related by transpose). If **G** is indefinite, the relationship is more complicated.

Lemma IV.3.14. If **A** is a linear operator on a metric vector space (X, \mathbf{G}) then with respect to orthonormal basis $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ we have

$$[\mathbf{A}^T]_j^i = \left(rac{g_{jj}}{g_{ii}}
ight) [\mathbf{A}]_i^j = \left(rac{g_{jj}}{g_{ii}}
ight) [[\mathbf{A}]^t]_j^i$$

for $1 \leq i, j \leq n$, where $[\mathbf{A}]_{j}^{i} = a_{ij} = a_{j}^{i}$ is the entry in the *i*th row and *j*th column of $[\mathbf{A}]_{\beta}^{\beta}$ and there is no summation over *i* and *j* (though the Einstein convention implies it on the right of the above equation).

Note. Since $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is an orthonormal basis in Lemma IV.2.14, then $g_{ii} = \mathbf{b}_i \cdot \mathbf{b}_i = \pm 1$ for each *i*. So the entries of $[\mathbf{A}^T]$ are the same is absolute value as the entries of $[\mathbf{A}]^t$. In fact, if \mathbf{Q} is any linear operator on a metric vector space of dimension *n* and signature $\sigma = 2k - n$ then \mathbf{Q} has a matrix representation with respect to β of the partitioned form

$$\left[\mathbf{Q}\right] = \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right]$$

(where A is $k \times k$, B is $k \times (n-k)$, C is $(n-k) \times k$, and D is $(n-k) \times (n-k)$), where the first k columns are timelike (i.e., $g_{ii} = \mathbf{b}_i \cdot \mathbf{b}_i = +1$ for $1 \le i \le k$) and the last n - k columns are spacelike (i.e., $g_{ii} = \mathbf{b}_i \cdot \mathbf{b}_i = -1$ for $k + 1 \leq i \leq n$). So $\frac{g_{ii}}{g_{jj}} = +1$ for (1) $1 \leq i \leq k$ and $1 \leq j \leq n$, or (2) $k + 1 \leq i \leq n$ and $k + 1 \leq j \leq n$, and $\frac{g_{ii}}{g_{jj}} = -1$ for (1) $1 \leq i \leq k$ and $k + 1 \leq j \leq n$ or (2) $k + 1 \leq i \leq n$ and $1 \leq j \leq k$. So the matrix representation of \mathbf{Q}^T has partitioned form

$$\left[\mathbf{Q}^{T}\right] = \left[\begin{array}{c|c} A^{t} & -C^{t} \\ \hline -B^{t} & D^{t} \end{array}\right].$$

Corollary IV.3.15. A linear operator **A** on a metric vector space is self-adjoint if and only if, with respect to an orthonormal basis, its matrix $[a_{ij} = [a_j^i]$ satisfies

$$a_{ij} = a_j^i = \frac{g_{jj}}{g_{ii}}a_i^j = \frac{g_{jj}}{g_{ii}}a_{ij}$$

for each i and j (there is not summation with respect to i or j here).

Note. If we apply Corollary IV.3.15 to an inner product space (where **G** is positive definite [or maybe negative definite]) then we see that [**A**] and [\mathbf{A}^T] are just transposes of each other. So if **A** is self-adjoint then matrix [**A**] is symmetric. (This is based on the fact that we only consider real vector spaces. If we considered complex vector spaces then we would need to replace the transpose of a matrix with its conjugate transpose. See "Definition 9.2. Conjugate Transpose and Hermetian Adjoint" in my online Linear Algebra notes on 9.2. Matrices and Vector Spaces with Complex Scalars.)

Lemma IV.3.16. A linear operator \mathbf{A} on an inner product space is orthogonal if and only if with respect to an orthonormal basis it has a matrix whose columns (respectively, rows) regarded as column (respectively, row) vectors form an orthonormal set in the standard inner product on \mathbb{R}^n .

Note. Since \mathbb{R}^n is an inner product space with the usual dot product and every $n \times n$ matrix determines a linear operator on \mathbb{R}^n , then we can use Lemma IV.3.16 to establish the following result on matrices.

Corollary IV.3.17. The rows of a matrix are an orthonormal set (in the standard inner product) if and only if the columns are.

Revised: 5/14/2019