IV.3. Coordinates

Note. In this section we express $\mathbf{G}(\mathbf{x}, \mathbf{y})$ in a metric vector space (X, \mathbf{G}) in terms of coordinates with respect to an ordered basis. This will give us a matrix of metric coefficients $\left[g_{i j}\right]$. We show that every metric vector space has an orthonormal basis (in Theorem IV.3.05). In "Sylvester's Law of Inertia" (Corollary IV.3.10) we see that, in a sense, every symmetric bilinear form on a metric vector space behaves similar to the Lorentz metric (in that it involves positive and negative coefficients).

Note IV.3.A. Let (X, \mathbf{G}) be a metric vector space. We denote, as usual, $\mathbf{G}(\mathbf{x}, \mathbf{y})=$ $\mathbf{x} \cdot \mathbf{y}$. Let $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis for X. Suppose $\mathbf{x}=\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ and $\mathbf{y}=\left(y^{1}, y^{2}, \ldots, y^{n}\right)$. Since \mathbf{G} is bilinear, then with Einstein's summation convention we have:

$$
\mathbf{G}(\mathbf{x}, \mathbf{y})=\mathbf{G}\left(x^{i} \mathbf{b}_{i}, y^{j} \mathbf{b}_{j}\right)=x^{i} y^{j} \mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)
$$

Note. Since $\mathbf{G}_{\downarrow}: X \rightarrow X^{*}$ is an isomorphism by Theorem IV.1.09, then it maps ordered basis $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ of X to an ordered basis of $X^{*}, \mathbf{G}_{\downarrow} \beta=$ $\left\{\mathbf{G}_{\downarrow} \mathbf{b}_{1}, \mathbf{G}_{\downarrow} \mathbf{b}_{2}, \ldots, \mathbf{G}_{\downarrow} \mathbf{b}_{n}\right\}$. Then the matrix that maps a coordinate vector \mathbf{v} with respect to β to a coordinate vector \mathbf{w} with respect to $\mathbf{G}_{\downarrow} \beta$ (where $\mathbf{w}=\mathbf{G}_{\downarrow} \mathbf{v}$, is $\left[\mathbf{G}_{\downarrow}\right]_{\beta}^{\mathbf{G}_{\downarrow} \beta}=\left[\delta_{i j}\right]$ (here we use double lower indices for Kronecker's delta function because the coordinate vectors will have components represented with upper indices).

Note IV.3.B. Let $\beta^{*}=\left\{\mathbf{b}^{1}, \mathbf{b}^{2}, \ldots, \mathbf{b}^{n}\right\}$ be the dual basis (for X^{*}) of β. Then by definition (see Section III.1), $\mathbf{b}^{j}: X \rightarrow \mathbb{R}$ satisfies $\mathbf{b}^{j}\left(a^{i} \mathbf{b}_{i}\right)=a^{j}$. For $\mathbf{f} \in X^{*}$ where $\mathbf{f}-f_{j} \mathbf{b}^{j}=\mathbf{f}\left(\mathbf{b}_{j}\right) \mathbf{b}^{j}$. For $\mathbf{x} \in X$, we have $\mathbf{G}_{\downarrow}(\mathbf{x}) \in X^{*}$ so (with $\mathbf{f}=\mathbf{G}_{\downarrow}(\mathbf{x})$ we have $\mathbf{G}_{\downarrow}(\mathbf{x})=\mathbf{G}_{\downarrow}(\mathbf{x})\left(\mathbf{b}_{j}\right) \mathbf{b}^{j}$. But $\mathbf{G}_{\downarrow}(\mathbf{x})=\mathbf{x}^{*}$ where $\mathbf{x}^{*}(\mathbf{y})=\mathbf{G}(\mathbf{x}, \mathbf{y})$ by the definition of \mathbf{G}_{\downarrow} (see Theorem IV.1.09), so $\mathbf{G}_{\downarrow}(\mathbf{x})\left(\mathbf{b}_{j}\right)=\mathbf{G}\left(\mathbf{x}, \mathbf{b}_{j}\right)=g_{i k} x^{i} y^{k}$ where $y^{k}=\left\{\begin{array}{l}0 \text { if } k \neq j \\ 1 \text { if } k=j\end{array}\right.$ (by Note IV.3.A). That is, $\mathbf{G}_{\downarrow}(\mathbf{x})\left({ }_{j}\right)=g_{i j} x^{i}$ and this is the j th component of $\mathbf{G}_{\downarrow}(\mathbf{x})$ with respect to β^{*}. Hence $\mathbf{G}_{\downarrow}(\mathbf{x})=g_{i j} x^{i} \mathbf{b}^{j}$. We now make a notational convention; we may denote vector $\mathbf{x}=\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ as x^{i}. With this notation, we write $\mathbf{G}_{\downarrow}(\mathbf{x})=g_{i j} x^{i} \mathbf{b}^{j}=g_{i j} x^{i} \in X^{*}$ (notice that summation is done over i so that index j determines the j th component of $\mathbf{G}_{\downarrow}(\mathbf{x})$ with respect to $\left.\beta^{*}\right)$. Also, $\mathbf{G}_{\downarrow}(\mathbf{x})=g_{i j} x^{j}$. So with $\mathbf{x}=\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ with respect to β then $\mathbf{G}_{\downarrow}(\mathbf{x})=\left(g_{1 j} x^{j}, g_{2 j} x^{j}, \ldots, g_{n j} x^{j}\right)$ with respect to β^{*} and hence the matrix that converts \mathbf{x} with respect to β to $\mathbf{G}_{\downarrow}(\mathbf{x})$ with respect to β^{*} is

$$
\left[\mathbf{G}_{\downarrow}\right]_{\beta}^{\beta^{*}}=\left[\begin{array}{cccc}
g_{11} & g_{12} & \ldots & g_{1 n} \\
g_{21} & g_{22} & \ldots & g_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
g_{n 1} & g_{n 2} & \ldots & g_{n n}
\end{array}\right]=\left[g_{i j}\right]
$$

Now \mathbf{G}_{\uparrow} is the inverse of \mathbf{G}_{\downarrow} so $\left[\mathbf{G}_{\uparrow}\right]_{\beta^{*}}^{\beta}$ is the inverse of $\left[\mathbf{G}_{\downarrow}\right]_{\beta}^{\beta^{*}}$. Let $\left[\mathbf{G}_{\uparrow}\right]_{\beta^{*}}^{\beta}=\left[g^{i j}\right]$. Then $g^{i j} g_{j k}=\delta_{k}^{i}$ and $g_{k i} g^{i j}=\delta_{k}^{j}$.

Note IV.3.C. If $\mathbf{x}, \mathbf{y} \in X^{*}$ where $\mathbf{x}=x_{i}$ and $\mathbf{y}=y_{i}$ with respect to β^{*} then

$$
\begin{aligned}
\mathbf{G}^{*}(\mathbf{x}, \mathbf{y}) & =\mathbf{G}\left(\mathbf{G}_{\downarrow} \mathbf{x}, \mathbf{G}_{\uparrow} \mathbf{y}\right) \text { see Lemma IV.1.11 } \\
& =\mathbf{G}\left(g^{i k} x_{k} \mathbf{b}_{i}, g^{j \ell} y_{\ell} \mathbf{b}_{j}\right) \text { since }\left[g^{i j}\right] \text { converts } \mathbf{x} \text { and } \mathbf{y} \text { coordinate vectors }
\end{aligned}
$$

with respect to β^{*} to $\mathbf{G}_{\uparrow} \mathbf{x}$ and $\mathbf{G}_{\uparrow \mathbf{Y}}$ coordinate vectors
with respect to β

$$
\begin{aligned}
& =g^{i k} x_{k} g^{j \ell} y_{\ell} \mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right) \text { since } \mathbf{G} \text { is bilinear } \\
& =g_{i j} g^{j \ell} x_{k} g^{j \ell} y_{\ell} \text { since } g_{i j}=\mathbf{G}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right) \\
& =\left(g_{i j} g^{j \ell}\right) g^{i k} x_{k} y_{\ell} \\
& =\delta_{i}^{\ell} g^{i k} x_{k} y_{\ell} \text { since }\left[g_{i j}\right] \text { and }\left[g^{j \ell}\right] \text { are inverses } \\
& =g^{\ell k} x_{k} y_{\ell}-g^{k \ell} x_{k} y_{\ell} \text { since } g^{k \ell}=g^{\ell k} \\
& =g^{i j} x_{i} y_{j}=x_{i} g^{i j} y_{j} .
\end{aligned}
$$

In particular, for $\mathbf{x}=\mathbf{b}^{i}$ and $\mathbf{y}=\mathbf{b}^{j}$ (so $x^{i}=y^{j}=1$ and all other coordinates of \mathbf{x} and \mathbf{y} with respect to β^{*} are 0) we have $\mathbf{G}^{*}(\mathbf{x}, \mathbf{y})=\mathbf{G}^{*}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=g^{i j}$. That is, the components of \mathbf{G}^{*} with respect to β^{*} are the $g^{i j}$. In terms of vectors and matrices, we can write

$$
\mathbf{G}^{*}(\mathbf{x}, \mathbf{y})=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{cccc}
g_{11} & g_{12} & \cdots & g_{1 n} \\
g_{21} & g_{22} & \cdots & g_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
g_{n 1} & g_{n 2} & \cdots & g_{n n}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] .
$$

Note. We now shift out attention to finding a "nice" (i.e., orthonormal) basis for a matrix vector space. This should then yield nice matrices $\left[g^{i j}\right]$ and $\left[g_{i j}\right]$.

Definition IV.3.03. An orthogonal set in a metric vector space X is a subset S of X where for any $\mathbf{x}, \mathbf{y} \in S$ we have $\mathbf{x} \cdot \mathbf{x} \neq 0, \mathbf{y} \cdot \mathbf{y}=0$, and $\mathbf{x} \cdot \mathbf{y}=0$. An orthonormal set in X is an orthogonal set of unit vectors; i.e. $\mathbf{x} \cdot \mathbf{x}=1$ for all $\mathbf{x} \in S$. An orthonormal basis for X is a basis which is an orthonormal set.

Lemma IV.3.04. For $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ an orthonormal basis for metric vector space (X, \mathbf{G}) in β coordinates we have $g_{i j}= \pm \delta_{i j}$.

Note. We know that every finite dimensional vector space has an orthonormal basis (since an n-dimensional vector space is isomorphic to \mathbb{R}^{n} by the Fundamental Theorem of Finite Dimensional Vector Spaces and "orthonormal" is based on the usual dot product in \mathbb{R}^{n}). We wish to establish this result for metric vector space (X, \mathbf{G}) where "orthonormal" is based on metric tensor \mathbf{G}. The proof will use the Gram-Schmidt Process (though not by name). We first need a lemma.

Lemma IV.3.06. Nontrivial metric vector space (X, \mathbf{G}) possesses at least one non-null vector.

Theorem IV.3.05. Every metric vector space (X, \mathbf{G}) possess at least one orthonormal basis.

Note. By convention, we order an orthonormal basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ so that $\mathbf{b}_{i} \cdot \mathbf{b}_{j}=$ $\left\{\begin{array}{l}+1 \text { if } i \leq k \\ -1 \text { if } i>k .\end{array}\right.$ With respect to this ordered basis,

$$
\mathbf{x} \cdot \mathbf{y}=x^{1} y^{1}+x^{2} y^{2}+\cdots+x^{k} y^{k}-x^{k+1} y^{k+1}-x^{k+2} y^{k+2}-\cdots-x^{n} y^{n} .
$$

The nest result show that parameter k does not depend on the choice of the basis.

Theorem IV.3.08. For any two orthonormal ordered bases $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ and $\beta^{*}=\left\{\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}, \ldots, \mathbf{b}_{n}^{\prime}\right\}$ for a metric vector space (X, \mathbf{G}) with

$$
\mathbf{b}_{i} \cdot \mathbf{b}_{j}=\left\{\begin{array}{l}
+1 \text { if } i \leq k \\
-1 \text { if } i>k
\end{array} \text { and } \mathbf{b}_{i}^{\prime} \cdot \mathbf{b}_{j}^{\prime}=\left\{\begin{array}{l}
+1 \text { if } i \leq \ell \\
-1 \text { if } i>\ell
\end{array}\right.\right.
$$

we have $k=\ell$.

Note. We now see that in a metric vector space the number of "negative coefficients" and the number of "positive coefficients" in \mathbf{G} (or in dot products or norms) is unique. This gives the following.

Corollary IV.3.09. Let (X, \mathbf{G}) be a matrix vector space with some basis $\beta=$ $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$. Let $0 \leq k \leq n$ be orthonormal such that $\mathbf{b}_{i} \cdot \mathbf{b}_{j}=\left\{\begin{array}{l}+1 \text { if } i \leq k \\ -1 \text { if } i>k .\end{array}\right.$ Then the quantity $\sum_{i=1}^{n} g_{i i}=k(+1)+(n-k)(-1)=2 k-n$ is independent of the choice of the orthonormal basis.

Definition. The quantity $2 k-n$ of Corollary IV.3.09 is the signature of G.

Note. The following corollary shows that a result similar to Theorem IV.3.08 holds for any symmetric bilinear form.

Corollary IV.3.10. Sylvester's Law of Inertia.

Let (X, \mathbf{G}) be a metric vector space. For any symmetric bilinear form $\mathbf{F}: X \times X \rightarrow$ \mathbb{R}, there is a choice of basis for which \mathbf{F} has the form

$$
\begin{gathered}
\mathbf{F}\left(x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}, x^{1} \mathbf{b}_{1}+x^{2} \mathbf{b}_{2}+\cdots+x^{n} \mathbf{b}_{n}\right) \\
=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\cdots+\left(x^{n}\right)^{2}-\left(x^{k+1}\right)^{2}-\left(x^{k+2}\right)^{2}-\cdots-\left(x^{k+\ell}\right)^{2}
\end{gathered}
$$

where $k+\ell \leq n$. Unless s or ℓ is zero, the subspace V^{+}spanned by the basic vectors with $\mathbf{F}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=+1$ depends on the choice of basis; so does the subspace V^{-}spanned by those with $\mathbf{F}\left(\mathbf{b}_{i}, \mathbf{b}_{i}\right)=-1$. However, V^{0}, spanned by those with $\mathbf{F}\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)=0$, depends only on \mathbf{F}, as do k and ℓ.

Lemma IV.3.11. Let $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for (X, \mathbf{G}). Then the dual basis to $\beta, \beta^{*}=\left\{\mathbf{b}^{1}, \mathbf{b}^{2}, \ldots, \mathbf{b}^{n}\right\}$, is an orthonormal basis in the dual metric \mathbf{G}^{*} on X^{*} if and only if β is an orthonormal basis for X.

Note. The proof of the following is left as Exercise IV.3.3.

Corollary IV.3.12. The signature of \mathbf{G}^{*} equals the signature of \mathbf{G}.

Note. We now turn our attention to change of coordinate matrices (from one basis to another), first relating such matrices for operators A and A^{T}. Recall that we use " t " to represent the transpose of a matrix and " T " to represent the adjoint of a linear operator.

Lemma IV.3.13. If A is a linear operator on an inner product space (X, \mathbf{G}), then $\left[\mathbf{A}^{T}\right]_{\beta}^{\beta}=\left([\mathbf{A}]_{\beta}^{\beta}\right)^{t}$ with respect to any orthonormal basis $\beta=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$.

Note. Lemma IV.3.13 gives the matrix representation of the adjoint of \mathbf{A} in terms of the matrix representation of \mathbf{A} (and the two matrices are related by transpose). If \mathbf{G} is indefinite, the relationship is more complicated.

Lemma IV.3.14. If \mathbf{A} is a linear operator on a metric vector space (X, \mathbf{G}) then with respect to orthonormal basis $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ we have

$$
\left[\mathbf{A}^{T}\right]_{j}^{i}=\left(\frac{g_{j j}}{g_{i i}}\right)[\mathbf{A}]_{i}^{j}=\left(\frac{g_{j j}}{g_{i i}}\right)\left[[\mathbf{A}]^{t}\right]_{j}^{i}
$$

for $1 \leq i, j \leq n$, where $[\mathbf{A}]_{j}^{i}=a_{i j}=a_{j}^{i}$ is the entry in the i th row and j th column of $[\mathbf{A}]_{\beta}^{\beta}$ and there is no summation over i and j (though the Einstein convention implies it on the right hand side of the above equation).

Note. Since $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ is an orthonormal basis in Lemma IV.2.14, then $g_{i i}=\mathbf{b}_{i} \cdot \mathbf{b}_{i}= \pm 1$ for each i. So the entries of $\left[\mathbf{A}^{T}\right]$ are the same is absolute value as the entries of $[\mathbf{A}]^{t}$. In fact, if \mathbf{Q} is any linear operator on a metric vector space of dimension n and signature $\sigma=2 k-n$ then \mathbf{Q} has a matrix representation with respect to β of the partitioned form

$$
[\mathbf{Q}]=\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]
$$

(where A is $k \times k, B$ is $k \times(n-k), C$ is $(n-k) \times k$, and D is $(n-k) \times(n-k))$, where the first k columns are timelike (i.e., $g_{i i}=\mathbf{b}_{i} \cdot \mathbf{b}_{i}=+1$ for $1 \leq i \leq k$) and
the last $n-k$ columns are spacelike (i.e., $g_{i i}=\mathbf{b}_{i} \cdot \mathbf{b}_{i}=-1$ for $k+1 \leq i \leq n$). So $\frac{g_{i i}}{g_{j j}}=+1$ for (1) $1 \leq i \leq k$ and $1 \leq j \leq n$, or (2) $k+1 \leq i \leq n$ and $k+1 \leq j \leq n$, and $\frac{g_{i i}}{g_{j j}}=-1$ for (1) $1 \leq i \leq k$ and $k+1 \leq j \leq n$ or (2) $k+1 \leq i \leq n$ and $1 \leq j \leq k$. So the matrix representation of \mathbf{Q}^{T} has partitioned form

$$
\left[\mathbf{Q}^{T}\right]=\left[\begin{array}{c|c}
A^{t} & -C^{t} \\
\hline-B^{t} & D^{t}
\end{array}\right]
$$

Corollary IV.3.15. A linear operator A on a metric vector space is self-adjoint if and only if, with respect to an orthonormal basis, its matrix $\left[a_{i j}=\left[a_{j}^{i}\right]\right.$ satisfies

$$
a_{i j}=a_{j}^{i}=\frac{g_{j j}}{g_{i i}} a_{i}^{j}=\frac{g_{j j}}{g_{i i}} a_{i j}
$$

for each i and j (there is not summation with respect to i or j here).

Note. If we apply Corollary IV.3.15 to an inner product space (where \mathbf{G} is positive definite [or maybe negative definite]) then we see that $[\mathbf{A}]$ and $\left[\mathbf{A}^{T}\right]$ are just transposes of each other. So if \mathbf{A} is self-adjoint then matrix $[\mathbf{A}]$ is symmetric. (This is based on the fact that we only consider real vector spaces. If we considered complex vector spaces then we would need to replace the transpose of a matrix with its conjugate transpose. See "Definition 9.2. Conjugate Transpose and Hermetian Adjoint" in my online Linear Algebra notes on 9.2. Matrices and Vector Spaces with Complex Scalars.)

Lemma IV.3.16. A linear operator \mathbf{A} on an inner product space is orthogonal if and only if with respect to an orthonormal basis it has a matrix whose columns (respectively, rows) regarded as column (respectively, row) vectors form an orthonormal set in the standard inner product on \mathbb{R}^{n}.

Note. Since \mathbb{R}^{n} is an inner product space with the usual dot product and every $n \times n$ matrix determines a linear operator on \mathbb{R}^{n}, then we can use Lemma IV.3.16 to establish the following result on matrices.

Corollary IV.3.17. The rows of a matrix are an orthonormal set (in the standard inner product) if and only if the columns are.

