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IV.4. Diagonalizing Symmetric Operators

Note. We now consider eigenvalues, eigenvectors, and diagonalization of linear

operators. In the main result (Theorem IV.4.5) we will see a result similar to one

encountered in sophomore Linear Algebra.

Note. Recall that we can diagonalize an n×n matrix A if and only if Rn has a basis

consisting of eigenvectors of A (see “Corollary 1. A Criterion for Diagonalization”

in my online Linear Algebra notes on 5.2. Diagonalization). This is dealt with in

connection to orthogonal matrices in:

Fundamental Theorem of Real Symmetric Matrices.

Every real symmetric matrix A is diagonalizable. The diagonalization

D = C−1AC can be achieved by using a real orthogonal matrix C.

See Theorem 6.8 of my online notes on 6.3. Orthogonal Matrices.

Note. We saw in the previous section that if metric vector space (X,G) has an

orthonormal basis then the matrix [gij] is diagonal (and so is [gij]). Similarly if

linear operator A has a collection of eigenvectors which are a basis β for X then

it is easy to describe the behavior of A. If Abi = λibi for linearly independent bi

then

Ax = A(xibi) = xiAbi) = xiλibi,

http://faculty.etsu.edu/gardnerr/2010/c5s2.pdf
http://faculty.etsu.edu/gardnerr/2010/c6s3.pdf


IV.4. Diagonalizing Symmetric Operators 2

or A(x1, x2, . . . , xn) = (λ1x
1, λ2x

2, . . . , λnx
n) and [A]ββ =


λ1 0 · · · 0

0 λ2 · · · 0

...
... . . . ...

0 0 · · · λn

 . So

geometrically we can break A down into scalar multiplication in various “direc-

tions.” If the eigenvectors form an orthonormal basis (which is the case for a

symmetric operator, as we’ll see in Theorem IV.2.05), then we get geometric in-

sight about A by considering the image of the unit sphere {x ∈ X | x · x = 1}

under A. In some directions it is stretched (when λ > 1) and in some directions it

is compressed (when λ < 1). This is illustrated in R2 and R3 in Figure 4.1 on page

93:

Definition IV.4.01. If A is a linear operator on an inner product space (X,G),

a vector x is maximal for A if x is a unit vector and Ax · Ax ≥ Ay · Ay for all

unit vectors y ∈ X.

Note. The inner product is a continuous mapping from X to R and in finite

dimensions (our setting) the unit sphere is compact so a maximal vector exists.
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Definition. If x is maximal for A, then

‖Ax‖ = max{Ay ·Ay | y ∈ X,y · y = 1}

is the norm of A, denoted ‖A‖.

Note. If we use the term “norm” then we should establish that ‖ · ‖ actually is a

norm on the collection of linear operators on X. This is often called the “operator

norm.” See 2.4. Bounded Linear Operators in my online notes for Fundamentals of

Functional Analysis (MATH 5740) for a few more details in a more general setting.

In Exercise IV.4.1 it is to be shown that ‖Ay‖ ≤ ‖A‖‖y‖ (notice that this involves

two different norms: the norm on X applies to y and Ay, and the operator norm

applied to A).

Definition. A symmetric linear operator is a self-adjoint linear operator on an

inner product space.

Note. We now consider eigenvalues and eigenvectors of symmetric operators.

Lemma IV.4.02. If x is a maximal vector of a symmetric operator A on an inner

product space (X,G) then x is an eigenvector of the operator A2, belonging to the

eigenvalue ‖A‖2.

http://faculty.etsu.edu/gardnerr/Func/notes/2-4.pdf
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Lemma IV.4.03. A symmetric operator A on a finite dimensional inner product

space has an eigenvector belonging to an eigenvalue +‖A‖ or −‖A‖.

Lemma IV.4.04. If X is an eigenvector of a self-adjoint linear operator A on a

metric vector space then x ·y = 0 implies x ·Ay = 0. That is, A(x⊥) ⊆ x⊥ and so

the map y 7→ Ay is an operator on x⊥, called the operator on x⊥ induced by A.

Note. Now for out main result concerning symmetric linear operators. We use

induction and perp spaces to give a fairly geometric argument.

Theorem IV.4.05. If A is a symmetric linear operator on a finite dimensional

inner product space X, then X has an orthonormal basis of eigenvectors of A.

Corollary IV.4.06. If A is a symmetric linear operator on a finite dimensional

inner product space, then [A]ββ is a diagonal matrix with respect to an orthonormal

basis β. The diagonal entries of [A]ββ are the (not necessarily distinct) eigenvalues

of A.

Note IV.4.A. Dodson and Poston deal with determinants of linear operators

in Section I.03. However, they only do so by considering matrices. Of course,

given a basis β we can produce a matrix [A] = [A]ββ representing linear operator

A. But different bases produce different matrices and different matrices will likely
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have different determinants. However, we can use a change of coordinates matrix

to relate the matrices, say [A]ββ = Cβ
β′[A]β

′

β′. A change of coordinates matrix is

invertible and so det(Cβ
β′) 6= 0. Hence

det([A]ββ) = det(Cβ
β′[A

β′

β′) = det(Cβ
β′)det([A]β

′

β′)

and we may have det([A]ββ) 6= det([A]β
′

β′) (this can be accomplished by simply letting

β′ have the same vectors as β but with the first two vectors interchanged in which

case the determinants differ by a factor of −1) but we still have det([A]ββ) = 0 if

and only if det([A]β
′

β′) = 0. So we can still find eigenvalues of linear operators on

finite dimensional inner product spaces using the idea of a characteristic equation

det([A − λI]ββ) = 0 independent of the basis β! Dodson and Poston refer to the

determinant of a linear operator (which, as we just argued, is not well defined); we

will be more careful and indicate a basis and only take determinants of matrices

with respect to a basis. As just observed, though, this is not necessary when looking

for eigenvalues.

Corollary IV.4.07. If A is a symmetric linear operator on a finite dimensional

inner product space with orthonormal basis β and if µ is a root of multiplicity m

of the characteristic equation det([A− λI]ββ) = 0 then the eigenspace belonging to

µ has dimension m.

Note. In the inductive proof of Theorem IV.4.05, we repeatedly used Lemma

IV.4.03 and hence at each step had real eigenvalues. So as a corollary to Theorem

IV.4.05 we have the following.
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Corollary IV.4.08. If A is a symmetric linear operator on a finite dimensional

inner product space then all eigenvalues of [A] are real.

Note. The next result shows that there is an orthogonal basis with respect to a

given symmetric bilinear form in an inner product space.

Corollary IV.4.09. In an inner product space (X,G) for any symmetric bilinear

form h on X we can find an orthonormal basis b1,b2, . . . ,bn for X such that

h(bi,bj) = 0 for i 6= j.

Definition IV.4.10. In inner product space (X,G) and symmetric bilinear form

h on X, an orthonormal basis b1,b2, . . . ,bn for X such that h(bi,bj) = 0 for i 6= j

(which exists by Corollary IV.4.09) consists of the principal directions b1,b2, . . . ,bn

of h.

Note. The principal directions of symmetric bilinear form h may not by unique.

For example, if µ is an eigenvalue of Ah (see the proof of Theorem IV.4.09) of

multiplicity 2 with corresponding unit eigenvector b1 and b2 (orthogonal), then b1

and b2 could be replaced with (b1 + b2)/
√

2 and (b1−b2)/
√

2 which are also unit

orthogonal vectors which span span(b1,b2).
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Definition. In inner product space (X,G) with symmetric linear operator h,

if symmetric linear operator Ah : X → X defined as Ah(x) = G↑(hx) where

hx : X → R is defined as hx(y) = h(x,y) (see the proof of Theorem IV.4.09) has

an eigenvalue λ such that Ah(x) = λx for all x ∈ X, then h is called isotropic.

Lemma IV.4.11. If h is isotropic, then h = λG for some λ ∈ R and Ah = λI.

Note/Definition. So far, we have defined the space H2 and H3 with a Lorentz

metric tensor in order to draw light cones in 2 and 3 dimensions. We refer to R4

with the metric tensor

(x0, x1, x2, x3) · (y0, y1, y2, y3) = x0y0 − x1y1 − x2y2 − x3y3

as Lorentz space L4. Since the metric tensor is neither positive nor negative definite,

then L4 is not an inner product space and so Theorem IV.4.05 does not hold (nor

do its corollaries) for L4. In Exercise IV.4.5, a self-adjoint operator on H2 (not

symmetric, since H2 is not an inner product space) is given which has only one

eigenvalue but the corresponding eigenspace is dimension 1; so there is no basis of

H2 consisting of eigenvectors of the operator. That is, Theorem IV.4.05 does not

hold for metric vector space H2 (and similar problems exist for H4). The following

result adds a hypothesis to self-adjoint linear operator A on L4 which implies the

existence of an orthonormal basis of eigenvectors of A.

Lemma IV.4.13. If a self-adjoint linear operator A on Lorentz space L4 has

a timelike eigenvector v (i.e., v · v > 0), then L4 has an orthonormal basis of

eigenvectors of A.
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