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Chapter V. Tensors and

Multilinear Forms

V.1. Multilinear Forms

Note. We generalize the idea of bilinear forms to the idea of multilinear forms.

We define the tensor product of vector spaces and tensors, which are elements of a

tensor product of copies of a vector space and copies of its dual space.

Definition V.1.01. A function f : X1×X2×· · ·×Xn → Y where X1, X2, . . . , Xn, Y

are vector spaces is a multilinear mapping if

(i) f(x1,x2, . . . ,xi+x′i, . . . ,xn) = f(x1,x2, . . . ,xi, . . . ,xn)+f(x1,x2, . . . ,x
′
i, . . . ,xn)

(ii) f(x1,x2, . . . ,xa, . . . ,xn) = f(x1,x2, . . . ,xn)a

for all x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn, x′i ∈ Xi for i ∈ {1, 2, . . . , n}, and a ∈ R.

The collection of all such functions (which is shown to be a vector space is Exercise

V.1.1) is denoted L(X1, X2, . . . , Xn; Y ). We denote L(X, X, . . . , X︸ ︷︷ ︸
n times

; Y ) as Ln(X; Y ).

If f ∈ Ln(X; R) then f is called a multilinear form on X.

Example V.1.02(iii). Let X be a vector space. Define f : X × X∗ → R as

f(x,g) = g(x). Then f is linear in the first variable by the linearity of each

g ∈ X∗ and is linear in the second variable by the definition of addition and scalar

multiplication in X∗. Then f ∈ L(X, X∗; R).
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Example V.1.02(iv). Let X be a vector space and let x1,x2, . . . ,xn ∈ X. Define

f : X∗ × X∗ × · · · × X∗ → R as f(g1,g2, . . . ,gn) = g1(x1)g2(x2) · · ·gn(xn). Then

f ∈ Ln(X∗; R).

Note. Let X be a vector space and g1,g2, . . . ,gn ∈ X∗. Define g : X ×X × · · · ×

X → Rn as g(x1,x2, . . . ,xn) = g1(x1)g2(x2) · · ·gn(xn). Then g ∈ Ln(X; R). We

have G multilinear and want to think of g as a product of g1,g2, . . . ,gn. This is

where we encounter the tensor product.

Definition. Let X be a vector space and let g1,g2, . . . ,gn ∈ X∗. The tensor

product of g1,g2, . . . ,gn is g : X ×X × · · · ×X → R defines as g(x1,x2, . . . ,xn) =

g1(x1)g2(x2) · · ·gn(xn). We denote the tensor product as g1 ⊗ g2 ⊗ · ⊗ gn.

Note/Definition. Since each gi is linear, then g1 ⊗ g2 ⊗ · · · ⊗ gn is multilinear

and so is in Ln(X; R). Similarly, if g1 ∈ X∗
1 , g2 ∈ X∗

2 , . . . , gn ∈ X∗
n then we

can define the tensor product g = g1 ⊗ g2 ⊗ · ⊗ gn in L(X1, X2, . . . , Xn; R) as

g(x1,x2, . . . ,xn) = g1(x1)g2(x2) · · ·gn(x). So there is a mapping, which we denote

as
⊗

such that
⊗

: X∗
1 × X∗

2 × · · · × X∗
n → L(X1, X2, . . . , Xn; R) defined as⊗

((g1,g2, . . . ,gn)) = g = g1 ⊗ g2 ⊗ · · · ⊗ gn. In Exercise V.1.3 it is to be shown

that
⊗

is multilinear.

Note. We now consider a specific example where X1 = X2 = R2 so that
⊗

:

(R2)∗ × (R2)∗ → L(R2, R2; R) = L2(R2; R) and discuss some shortcomings of this

mapping.
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Note. Let {b1,b2} be any basis of R2. Then for f ∈ L2(R2; R) a bilinear form on

R2 × R2 we have for x,y ∈ R2:

F(x,y) = F((x1, x2), (y1, y2)) = F(x1b1 + x2b2, y
1b1 + y2b2)

= x1y2F(b1,b2) + x1y2F(b1,b2) + x2y1F(b2,b1) + x2y2F(b2,b2)

by the bilinearity of F

= xiyjF(bi,bj) with the Einstein summation convention.

Setting F(bi,bj) = fij we have

F(x,y) = fijx
iyj

= fij(b
i(x))(bj(y)) by the definition of

the dual basis {b1,b2} of X∗ = (R2)∗

= fij(b
i ⊗ bj(x,y)),

and hence F = fijb
i ⊗ bj. Since F is an arbitrary element of L2(R2; R) and F is a

linear combination of {b1 ⊗ b1,b1 ⊗ b2,b2 ⊗ b1,b2 ⊗ b2} then this is a spanning

set of L2(R2; R).

Note. Notice that b1 ⊗ b2 6= b2 ⊗ b1 since, for example, with (x,y) = (b1 +

2b2, 3b1 + 4b2) ∈ R2 ⊗ R2 we have

b1 ⊗ b2 = b1
1(x)b2(y) = x1y2 = (1)(4) = 4

6= b2 ⊗ b1(x,y) = b2(x)b1(y) = x211 = (2)(3) = 6.

Hence tensor product are not in general commutative.
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Note/Definition. Though a sum of tensor products in (R2)∗×(R2)∗ is an element

of L2(R2; R), the sum may not itself be a tensor product. More generally, for

g1 ∈ X∗
1 , g2 ∈ X∗

2 , . . . , gn ∈ X∗
n then we call g1⊗g2⊗· · ·⊗gn ∈ L(X1, X2, . . . , Xn; R)

a simple tensor (or a pure tensor).

Note. If {u1,u2} is a basis for X1 and {v1,v2} is a basis for X2, then with {u1,u2}

and {v1,v2} are the dual bases of X∗
1 and X∗

2 then we claim that if

a11u
1 ⊗ v1 + a12u

1 ⊗ v2 + 221u
2 ⊗ v1 + a22u

2 ⊗ v2

is a simple tensor the a11a22−a12a21 = 0. For a simple tensor g, we have g = (au1+

bu2)⊗(cv1+dv2) and notice that for x = x1u1+x2u2 ∈ X1 and y = y1v1+y2v2 ∈ X2

we have

g(x,y) = ((au1 + bu2)(x))((cv1 + bv2)(y)) = (au1(x) + bu2(x))(cv1(y) + dv2(y))

= acu1 ⊗ v1(x,y) + adu1 ⊗ v2(x,y) + bcu2 ⊗ v1(x,y) + bdu2 ⊗ v2(x,y)

= (acu1 ⊗ v1 + adu1 ⊗ v2 + bcu2 ⊗ v1 + bdu2 ⊗ v2)(x,y),

so that

(au1 + bu2)⊗ (cv1 + dv2) = acu1 ⊗ v1 + adu1 ⊗ v2 + bcu2 ⊗ v1 + bdu2 ⊗ v2

= a11u
1 ⊗ v1 + a12u

1 ⊗ v2 + a21u
2 ⊗ v1 + a22u

2 ⊗ v2 (∗)

where a11 = ac, a12 = ad, a21 = bc, and a22 = bd. Notice that a11a22 − a12a21 = 0.

So if (∗) is a simple tensor then a11a22 − a12a21 = 0. Hence, if a11a22 − a12a21 6= 0

then (∗) does not represent a simple tensor. For example, with a11 = a22 = 1 and

a12 = a21 = 0 we see that u1⊗v1 +u2⊗v2 is not a simple tensor. So the collection
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of simple tensors is not closed under addition and so is not a vector space. In

particular, the collection of simple tensors in L2(R2; R) is not a vector space.

Note. We now see that we cannot take the tensor product of spaces X∗
1 , X∗

2 , . . . , X∗
n

simply as the collection of tensor products g1⊗g2⊗· · ·⊗gn since these do not form

a vector space. But we have also seen that, since {b1⊗b1,b1⊗b2,b2⊗b1,b2⊗b2}

is a spanning set for L2(R2; R), that any linear combination of simple tensors is

again in L2(R2; R). So a “good candidate” (as Dodson and Poston put it on page

101) for the tensor product of space X∗
1 , X∗

2 , . . . , X∗
n is L(X1, X2, . . . , Xn; R). In

Exercise V.1.4(b) and V.1.4(d) we will show that the following hold.

(T i)
⊗

: X∗
1 ×X∗

2 × · · · ×X∗
n → X∗

1 ⊗X∗
2 ⊗ · · · ⊗X∗

n is multilinear.

(T ii) If f : X∗
1 ×X∗

2 ×· · ·×X∗
n → Y (where Y is some vector space) is multilinear,

then there is a unique linear map f̂ : X∗
1 ⊗ X∗

2 ⊗ · · · ⊗ X∗
n → Y such that

f = f̂ ◦
⊗

.

Property (T ii) implies that the following diagram commutes:

X∗
1 ⊗X∗

2 ⊗ · · · ⊗X∗
n

-

⊗
X∗

1 ×X∗
2 × · · ·X∗

n

@
@

@@R
f

�
�

��	
f̂

Y

In fact, these two properties are sufficient to define a tensor product of spaces up

to isomorphism. We now shift notation and denote the spaces as X1, X2, . . . , Xn.
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Definition V.1.04. A tensor product of vector spaces X1, X2, . . . , Xn is a vector

space X together with a map
⊗

: X1×X2×· · ·×Xn → X which satisfies properties

(T i) and (T ii) above.

Lemma V.1.05. A tensor product of finite dimensional vector spaces X1, X2, . . . , Xn

always exists and any two are isomorphic “in a natural way.”

Note. In light of Lemma V.1.05, we speak of the tensor product of vector spaces

X1, X2, . . . , Xn and denote this as X1 ⊗X2 ⊗ · · · ⊗Xn.

Note. The elements of X1⊗X2⊗· · ·⊗Xn are linear combinations of simple tensors:

X1 ⊗X2 ⊗ · · · ⊗Xn = {(x11 ⊗ x12 ⊗ · · · ⊗ x1n | xim ∈ X1

and ai ∈ R for 1 ≤ i ≤ k and 1 ≤ m ≤ n, k ∈ N}.

The following is to be proved in Exercise V.1.5.

Lemma V.1.A. Let X1, X2, . . . , Xn be vector spaces. Let xi,x
′
i ∈ Xi for 1 ≤ i ≤ n

and let a ∈ R. Then

(T A) x1 ⊗ x2 ⊗ · · · ⊗ (xi + x′i) ⊗ · · · ⊗ xn = x1 ⊗ x2 ⊗ · · · ⊗ xi ⊗ · · · ⊗ xn =

x1 ⊗ x2 ⊗ · · · ⊗ x′i ⊗ · · · ⊗ xn.

(T S) (x1a) ⊗ x2 ⊗ · · · ⊗ xn = x1 ⊗ (x2a) ⊗ · · · ⊗ xn = x1 ⊗ x2 ⊗ · · · ⊗ (xna) =

(x1 ⊗ x2 ⊗ · · · ⊗ xn)a.
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Note. Dodson and Poston state that we could use (T A) and (T S) to characterize

the elements of X1⊗X2⊗· · ·⊗Xn, “but this would involve more definitions.” They

then defend the fact that (T i) and (T ii) characterize the tensor product of vector

spaces and (T A) and (T S) characterize the properties of the tensor product of

vectors. They defend this view with the isomorphism conclusion of Lemma V.1.05

(see page 103).

Lemma. V.1.07. There is a “natural” isomorphism yielding X∗
1⊗X∗

2⊗· · ·⊗X∗
n
∼=

(X1 ⊗X2 ⊗ · · · ⊗Xn)
∗.

Note. Dodson and Poston claim that Lemma V.1.07 illustrates the usefulness of

the tensor product. It “reduces the theory of multilinear forms on a collection of

spaces [i.e., elements of L(X1, X2, . . . , Xn; R) = X∗
1 ⊗ X∗

2 ⊗ · · · ⊗ X∗
n)] to that of

linear functionals on a single space [i.e., elements of X1⊗X2⊗· · ·⊗Xn].” See page

104.

Lemma V.1.08. For any two vector spaces X1 and X2, there is a “natural”

isomorphism yielding L(X1; X2) ∼= X∗
1 ⊗X2.
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Note. At this stage, we have defined

1. The tensor product of covariant vectors from the same space g1,g2, . . . ,gn ∈ X∗,

g1 ⊗ g2 ⊗ · · · ⊗ gn,

2. the tensor product of covariant vectors from different spaces g1 ∈ X∗
1 , g2 ∈ X∗

2 ,

. . . , gn ∈ X∗
n, g1 ⊗ g2 ⊗ · · · ⊗ gn.

3. the tensor product of (covariant) vector spaces X∗
1 , X

∗
2 , . . . , X

∗
n as X∗

1 ⊗ X∗
2 ⊗

· · · ⊗X∗
n = L(X1, X2, . . . , Xn; R), and

4. the tensor product of vector spaces X1, X2, . . . , Xn (in Definition V.1.04).

We now define the tensor product of linear maps Ai : Xi → Yi for 1 ≤ i ≤ n where

Xi and Yi are vector spaces.

Note. Let Ai : Xi → Yi be linear maps for 1 ≤ i ≤ n. Then we have the mappings

X1 ×X2 × · · · ×Xn
(A1,A2,...,An)−→ Y1 × Y2 × · · · × Yn

⊗
−→ Y1 ⊗ Y2 ⊗ · · · ⊗ Yn

where (A1,A2, . . . ,An)(x1,x2, . . . ,xn) = (A1x2,A2x2, . . . ,Anxn) and⊗
((A1x1,A2x2, . . . ,Anxn)) = (A1x1)⊗ (A2x2)⊗ · · · ⊗ (Anxn).

Let h : X1 × X2 × · · · × Xn → Y1 ⊗ Y2 ⊗ · · · ⊗ Yn denote the composition⊗
◦(A1A2, . . . ,An).

Lemma V.1.B. Let Ai : Xi → Yi be linear maps for 1 ≤ i ≤ n. Mapping

h : X1 ×X2 × · · · ×Xn → Y1 ⊗ Y2 ⊗ · · · ⊗ Yn defined as h =
⊗

◦(A1,A2, . . . ,An)

is multilinear.
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Note. Lemma V.1.B shows that (T i) holds (with X∗
i of (T i) replaced with Xi

here). By (T ii) (and its proof in Exercise V.1.4(d)) with Y = Y1 ⊗ Y2 ⊗ · · · ⊗ Yn

and X∗
i of (T ii) replaced with Xi, and h : X1×X2×· · ·×Xn → Y1⊗Y2⊗· · ·⊗Yn,

there is a unique linear ĥ : X1 ⊗ X2 ⊗ · · · ⊗ Xn → Y1 ⊗ Y2 ⊗ · · · ⊗ Yn such that

h = ĥ ◦
⊗

(where X∗
j of (T ii) is replaced with Xi here, and Y of (T ii) is replaced

with Y1 ⊗ Y2 ⊗ · · · ⊗ Yn here).

Definition. Let Xi and Yi be vector spaces and let Ai : Xi → Yi be linear maps

for 1 ≤ i ≤ n. The unique linear map ĥ : X1 ×X2 × · · · ×Xn → Y1 ⊗Y2 ⊗ · · · ⊗ Yn,

such that h = ĥ ◦
⊗

where h : X1 ×X2 × · · · ×Xn → Y1 ⊗ Y2 ⊗ · · · ⊗ Yn defined as

h =
⊗

◦(A1,A2, . . . ,An), is the tensor product of maps A1,A2, . . . ,An, denoted

ĥ = A1 ⊗A2 ⊗ · · · ⊗An.

Note/Definition. We now shift gears and consider tensor products of copies of

a vector space X and its dual X∗. In particular, we are interested in the tensor

product of spaces

X ⊗X ⊗ · · · ⊗X︸ ︷︷ ︸
k times

⊗X∗ ⊗X∗ ⊗ · · · ⊗X∗︸ ︷︷ ︸
h times

.

This is denoted Xk
h . Vectors in Xk

h are called tensors of X, covariant of degree h

and contravariant of degree k, or of type
(

k
h

)
. We denote Xk

0 = Xk and X0
h = Xh

(so that X = X1 and X∗ = X1). By convention, we take X0
0 = R. By Exercise

V.1.4(c), dim(Xk
h) = (dim(X))k+h.
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Note. We could have a tensor product of copies of X and X∗ but not have all of the

X’s first followed by all of the X∗’s. Though we can permute the order in a tensor

product of vector spaces to produce an isomorphic tensor product (by Exercise

V.1.8(b)), we will often leave the product in the original order. For example,

X ⊗X ⊗X ⊗X∗ ⊗X∗ ⊗X ⊗X ⊗X∗ ⊗X ⊗X

is denoted X3 2 2
2 1 and its elements are covariant of degree 2+1 = 3, contravariant of

degree 3+2+2 = 7, and of type (3 2 2
2 1 ). We now introduce the idea of a contraction

which modifies the type of a tensor product.

Note/“Definition.” A contraction map of a tensor product of copies of vector

spaces X and X∗ is a linear mapping to a tensor product involving one less copy

of X and one less copy of X∗. This is denoted C˜ i
j where we eliminate the ith

contravariant space and the j covariant space from the original tensor product.

For example, with

C˜ 3
2 : X ⊗X ⊗X ⊗X∗ ⊗X ⊗X∗ ⊗X∗ → X ⊗X∗ ⊗X ⊗X∗

↑ ↑

we define C˜ 3
2 on simple tensors as

C˜ 3
2(x⊗ x2 ⊗ x2 ⊗ f1 ⊗ x4 ⊗ f2 ⊗ f3) = (x1 ⊗ x2 ⊗ f1 ⊗ x4 ⊗ f3)(f2(x3));

notice that defining C˜ 3
2 on simple tensors determines the contraction on the whole

tensor product space since the simple tensors span the tensor product space (as in

Exercise V.1.4(a)).
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Note. We now dip into setting where we potentially have very numerous indices.

When we introduce bases for vector space, this will let us express tensors in a

tensor product space with respect to the resulting basis for the tensor product

space. Instead of having an n-tuple representation (as in Rn or n-dimensional

vector space X) we will have nk components when the tensor product space results

from a product of k n-dimensional spaces.

Note. If {b1,b2, . . . ,bn} is a basis for vector space X and {b1,b2, . . . ,bn} is the

dual basis for X∗, then by Exercise V.1.4(c)

{bi ⊗ bj ⊗ bk ⊗ b` ⊗ bm | 1 ≤ i, j, k, `,m ≤ n}

is a basis for X ⊗X ⊗X ⊗X∗ ⊗X∗ = X3
2 . So any x ∈ X3

2 we have x as a unique

linear combination of the form

x = (bi ⊗ bj ⊗ bk ⊗ b` ⊗ bm)xijk
`m .

So we can represent tensor x ∈ X3
2 in terms of its components xijk

`m (notice that this

requires n5 real numbers to thusly represent x).

Note. Recall from Section III.1 (see Theorem III.1.B and the note that follows it)

that to change the representation of a vector from basis β to basis β′, we have the

relationship between the coordinates of x′ i = bi
jx

j where b′
i = bj

ibj and b̃i
kb

k
j = δi

j.

If we convert tensor x ∈ X3
2 with coordinates xijk

`m from basis

{bi ⊗ bj ⊗ bk ⊗ b` ⊗ bm | 1 ≤ i, j, k, `,m ≤ n}
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to basis

{b′
i ⊗ b′

j ⊗ b′
k ⊗ b` ′ ⊗ bm ′ | 1 ≤ i, j, k, `,m ≤ n}

we get “by precisely similar arguments” as given in Section III.1 that

xi′j′k′

`′m′ = b̃i′

i b̃
j′

j b̃k′

k b`
`′bm

m′x
ijk
`m

where b′
p = bu

pbi, bi = b̃p
ib

′
p, and b̃i′

i = δi′
p . Similarly, a tensor of type (3 2 2

2 1 ) has

coordinates labeled xijk m
` np which transforms as

xi′j′k′ m′

`′ n′p′ = (b̃i′

i b̃
j′

j b̃k′

k b`′

` bm′

m bn′

n bp′

p )xijk m
` np.

Note. We can use coordinates and bases to represent tensor products of tensors.

If

v = vi1i2···ik
j1j2···jh

(bi1 ⊗ bi2 ⊗ · · · ⊗ bik ⊗ bj1 ⊗ bj2 ⊗ · · · ⊗ bjn) ∈ Xk
h

and

w = wa1a2···a`

b1b2···bn
(ba1

⊗ ba2
⊗ · · · ⊗ ba`

⊗ bb1 ⊗ bb2 ⊗ · · · ⊗ bbm) ∈ X`
m

then

v ⊗w = vi1i2···ik
j1j2···jh

wa1a2···a`

b1b2···bn
(bi1 ⊗ bi2 ⊗ · · · ⊗ bik ⊗ bj1 ⊗ bj2 ⊗ · · · ⊗ bjn)

⊗(ba1
⊗ ba2

⊗ · · · ⊗ ba`
⊗ bb1 ⊗ bb2 ⊗ · · · ⊗ bbm) ∈ Xk `

h m
∼= Xk+h`

h+m

where the isomorphism holds by Exercise V.1.8(b).

Note. As an example of how a contraction affects coordinates, consider x =

(bi ⊗ bj ⊗ b` ⊗ bm)xijk
`m ∈ X3

2 and the contraction C˜ 2
1. Notice

C˜ 2
1(bi ⊗ bj ⊗ bk ⊗ b` ⊗ bm = bi ⊗ bk ⊗ bm(b`(bj)) = (bi ⊗ bk ⊗ bm)δi

j
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since, by the definition of dual basis, b`(bj) = δ`
j, so

C˜ 2
1(x) = (bi ⊗ bk ⊗ bm)δ`

jx
ijk
`m = (bi ⊗ bk ⊗ bm)xijk

jm ∈ X2
1 .

Notice that, by convention, there is summation over parameter j in the scalars so

that neither j nor ` explicitly appear in the tensor sums; this is called contracting

over j and `.

Note. Recall that in the proof of Lemma V.1.08, we had f : X∗
1 ⊗X2 → L(X1; X2)

as f((g,x2)) = h where h(x1) = x2(g(x1)), and isomorphism f̂ : X∗
1 ⊗ X2 →

L(X1; X2) where f = f̂ ◦
⊗

. Let a ∈ X∗
1 ⊗ X2 where a = bj ⊗ b′

ia
i
j for bases

{b1,b2, . . . ,bn} of X1 and {b′
1,b

′
2, . . . ,b

′
m} of X2 (so that the dual basis for X∗

1 is

{b1,b2, . . . ,bn}). Then for x ∈ X1 we have

(̂fa)x = f̂(bi ⊗ b′
ia

i
j)x

= f̂(bj ⊗ b′
i)xai

j since f̂ is linear as shown in the proof of Lemma V.1.08

= f̂
(⊗

((bk,b− i′))
)

xai
j by the definition of

⊗
= f((bk,b′

i))xa + ji since f = f̂ ◦
⊗

= b′
i(b

j(x))ai
j by the definition of f

= b′
i(b

j(x`b`))a
i
j = (b′

ix
j)ai

j by the definition of dual basis bj.

So the matrix representing f̂a ∈ L(X1; X2) is the same as the matrix representing

a ∈ X∗
1 ⊗X2, namely [a] = [ai

j]. So whatever bases we choose for X1 and X2, they

give the same representation for both f̂a and a.
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Note. In Theorem IV.1.09 and Note IV.1.A, we saw that in metric vector space

(X,G), G↓ : X → X∗ and G↑ : X∗ → X are isomorphisms. These yield isomor-

phisms between certain tensor products of spaces. For example,

Θ = I⊗ I⊗G↑ ⊗G↓ ⊗G↑ ⊗ I⊗G↑ : X ×X∗ ⊗X∗ ⊗X ⊗X∗ ⊗X ⊗X∗

→ X ⊗X∗ ⊗X ⊗X∗ ⊗X ⊗X ⊗X

is an isomorphism. More generally, we have Xk
h
∼= Xk′

h′ if k + h = k′ + h′; this

is unimpressive since both are real vector spaces with, by Exercise V.1.4(c), the

same dimension. Additionally, it seems desirable to keep the original structure of

a tensor product of spaces. Dodson and Poston state “velocity at a point arises as

a contravariant vector. The gradient of a potential at a point arises as a covariant

one and the contours of the functional . . . are the local linear approximation to

those of the potential.” See page 109.

Note. Let A : X → Y and A′ : X ′ → Y ′ have matrix representations [ai
j] and

[a′k` ] with respect to bases {b1,b2, . . . ,bn}, {b′
1,b

′
2, . . . ,b

′
n}, {c1, c2, . . . , cm}, and

{c′1, c′2, . . . , c′m} for X, X ′, Y , and Y ′, respectively. Then for x ∈ X ⊗X ′ we have

A⊗A′(x) = A⊗A′(bj ⊗ b′
ix

j`) since {bj ⊗ b′
i | 1 ≤ j, ` ≤ n} is a basis for

X ⊗X ′ by Exercise V.1.4(c)

= A⊗A′(bj ⊗ b′
`)x

j`

= (Abj ⊗A′b`′)xj` by the definition of the tensor product of maps

= (cia
i
j)⊗ (c′ka

′k
` )x

j` since Abj ∈ Y , A′b` ∈ Y ′, {c1, c2, . . . , cm} is a

basis of Y , {c′1, c′2, . . . , c′m} is a basis for Y ′, [ai
j] represents A,
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and [a′k` ] represents A′

= (ci ⊗ c′k)a
i
ja

′k
`x

j`.

So the matrix representation of A⊗A′ is the nn′ ×mm′ matrix with entries ai
ja

′k
`

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ m′, and 1 ≤ ` ≤ n′. The the mapping

Θ = I⊗ I⊗G↑ ⊗G↓ ⊗G↑ ⊗ I⊗G↑ can be represented by a matrix with entries

which are the products of all elements representing the constituents of the tensor

product of maps in Θ. So for Θ(x) = y we have the transformation of coordinates

yi k′ m′np′

j `′ = gk′kg`′`g
m′mgp′pxi ` n

jk m p.

Notice that in terms of coordinates, G↑ “raises” indices k, m, and p, and G↓

“lowers” index `. This is why we use the up-arrow and down-arrow notation!

Note. Consider f̂ : X∗ ⊗X → L(X; X) from the proof of Lemma V.1.08, and

I⊗G↓ : X∗ ⊗X → X∗ ⊗X∗ = L(X, X; R) = L2(X; R)

(recall that X∗⊗X∗ is defined to be L(X, X; R)). Define Ψ : L(X; X) → L2(X; R)

as Ψ = I × G↓ ◦ f̂−1. Then Ψ is an isomorphism between the space of linear

operators L(X; X) and the space of bilinear forms L2(X; R). More directly, for

A ∈ L(X; X) we have Ψ(A)((x,y)) = Ax · y by Exercise V.1.10(a). Additionally,

A is nonsingular if and only if ΨA is non-degenerate, and A is self-adjoint if and

only if ΨA is symmetric (by Exercise V.1.10(b)).
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