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VII.2. Manifolds

Note. In this section, we define a manifold modeled on an affine space, chart/atlas,

mappings between manifolds, and tangent spaces to a manifold.

Note. We desire a “local resemblance” to an affine plane for a manifold so that, as

seen in the previous section, we can then set up differentiation of functions defined

on the manifold.

Definition VII.2.01. A Ck-manifold modeled on an affine space X is a Hausdorff

topological space M together with a collection of open sets {Ua | a ∈ A} in M and

corresponding maps ϕa : Ua → X such that

(M i) ∪a∈AUa = M .

(M ii) Each ϕa defines a homeomorphism mapping Ua to ϕa(Ua) ⊆ X.

(M iii) If Ua∩Ub 6= ∅ then the composites ϕa◦ϕ−1
b : X → X and ϕb◦ϕ−1

a : X → X

on the sets ϕb(Ua) ⊆ X and ϕa(Ub) ⊆ X (respectively) on which they are

defined are Ck.

The pairs (Ua, ϕa) are called charts on M and the set {(U1, ϕa) | a ∈ A} of all such

charts is an atlas. The dimension of M is the dimension of X, dim(M) = dim(X).

If dim(M) = n then M is called an n-manifold.
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Note. Notice that ϕa ◦ ϕ−1
b : X → X and ϕb ◦ ϕ−1

a : X → X so the continuity and

differentiability of these maps is defined in the previous section.

Note. Dodson and Poston make insightful comments about the definition of a

manifold. “The axioms (M i)–(M iii) are natural enough; (M i) just says that no

point in M is ‘uncharted,’ (M ii) that the charts are topologically uncomplicated,

relative to the topology on M , and (M iii) that they are differentially nice (Ck)

relative to each other.” See page 161.

Definition. A new chart (U,ϕ) (that is, a chart not already in the atlas of M) is

admissible if for all a ∈ A we have ϕ ◦ ϕ−1
a : X → X and ϕa ◦ ϕ−1 : X → X are Ck

whenever they are defined (that is, on the appropriate domains).
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Note. It is common to require the atlas of a manifold to be “maximal.” That

is, it includes all admissible charts. See my online notes based on Wald’s General

Relativity on “2.1. Manifolds” (see the convention introduced after the definition

of manifold). Dodson and Poston say as much themselves when they state (see

page 161): “M is not changed in any significant way if we enlarge the family

(Ua, ϕa) | a ∈ A} by adding admissible charts, and we shall feel free to do so.”

Note. In Dodson and Poston, the term “manifold” is used, unless stated otherwise,

to mean a C∞-manifold (which they also call a “smooth manifold”).

Note. We can use charts on manifolds to define differentiability of functions be-

tween manifolds. The following definition refers to “some charts”, but in Exercise

VII.2.2 it is to be shown that the definition is independent of the charts used (and

so the condition holds for all admissible charts). Recal from Definition VI.1.11 that

a homeomorphism f between topological spaces is a continuous bijection with a

continuous inverse. Since manifolds are, by definition, topological spaces then the

concept of a homeomorphism between manifolds is defined.

Definition VII.2.02. A map f : M → N between smooth manifolds is differen-

tiable (respectively, Ck) at x ∈M if for some charts (U,ϕ) on M and (V, ψ) on N ,

with x ∈ U and f(x) ∈ V , the map ψ ◦ f ◦ ϕ−1 : X → X (notice ϕ−1 : X → M ,

f : M → N , and ψ : N → X) is differentiable (respectively Ck) at ϕ(x) ∈ X. A

homeomorphism f : M → N between Ck manifolds is a Ck diffeomorphism if both

f and f−1 are Ck. If there is a diffeomorphism between two manifolds they are

diffeomorphic.

http://faculty.etsu.edu/gardnerr/5310/notes-Wald/waldrel-2-1.pdf
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Note. In the geometric discussion of tangent spaces to a manifold, Dodson and

Poston mention the Whitney Embedding Theorem which state that an m-manifold

(along with its “differential structure”) can be embedded in Rn where n ≤ 2m+ 1.

For example, a Klein bottle (where m = 1) can be embedded in R4. With such

an embedding for manifold M , with x ∈ M we can define the tangent space at

x geometrically as the affine subspace T̃xM ⊆ Rn (using the geometry of Rn).

More precisely, to get a tangent vector space as in Definition II.1.02, we consider

Tx(T̃xM). We could denote this as Tx(M); see page 165. However, this argument

depends on the embedding (a term we have not defined). We want a definition of

tangent space depending only on the properties of the manifold itself (namely, the

open sets and the charts). This is done with Exercise VII.2.3.

Definition. Let M be a manifold modeled on affine space X with vector space T .

For charts (U,ϕ) and (U ′, ϕ′) on M , u ∈ U ∩ U ′, and t, t′ ∈ T , define the relation

∼ by

(U,ϕ, t) ∼ (U ′, ϕ′, t′) if and only if D̂ϕ(u)(ϕ
′ ◦ ϕ−1)t = t′.

Note. By Exercise VII.2.3(a), relation ∼ is an equivalence relation. By Exercise

VII.2.3(b), if (U,ϕ, t) ∼ (U ′, ϕ′, t′) and (U,ϕ, s) ∼ (U ′, ϕ′, s′) then (U,ϕ, t + s) ∼

(U ′, ϕ′, t′ + s′) and for all a ∈ R (U,ϕ, ta) ∼ (U ′, ϕ′, t′a). So we can define addition

and scalar multiplication on equivalence classes of

TuM = {(U,ϕ, t) | (U,ϕ) is a chart on M with u ∈ U and t ∈ T},

making TuM a vector space.
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Definition. Let M be a smooth manifold modeled on affine space X with vector

space T . Define addition and scalar multiplication on the equivalence classes of

TuM as above. Then TuM is the tangent space to M at u and the equivalence

classes of TuM are tangent vectors to M at u.

Note. Now if M and N are smooth manifolds and f : M → N then we can

interpret the derivative of f at x as the linear map Dxf : TxM → Tf(x)N as

explained in Exercise VII.2.6 as follows.

Note. In Exercise VII.2.6(a) it is to be shown that if f : M → N is differentiable

at u ∈ U ∩U ′ and (V, ψ) is a chart on N with f(u) ∈ V , then (U,ϕ, t) ∼ (U ′, ϕ′, t′)

implies Dϕ(u)(ψ ◦ f ◦ ϕ−1)t = Dϕ′(u)(ψ ◦ f ◦ ϕ′ −1)t′ which in turn implies that

(V, ψ,Dϕ(u)(ψ ◦ f ◦ ϕ−1)t) ∼ (V, ψ,Dϕ′(u)(ψ ◦ f ◦ ϕ′ −1)t′) so that f induces a well

defined map Duf : TuM → Tf(u)N which takes the equivalence class of (U,ϕ, t) to

the equivalence class of (V, ψ,Dϕ(u)(ψ ◦ f ◦ ϕ−1)t), and Duf is linear. In Exercise

VII.2.6(b), it is shown that we can differentiate ϕ : U → X at u ∈ U by mapping

each t ∈ TxM to its representative in Tϕ(x)X; this map is denoted Dxϕ.

Note. Dodson and Poston conclude this section by observing that for each x ∈M ,

TxM is isomorphic to T . However, unlike with the case that there was a natural

isomorphism dx in the affine space setting where TxX ∼= T , there is no one “natural”

isomorphism between TxM and T ; in fact, each chart (U,ϕ) with x ∈ U gives such

an isomorphism; namely dϕ(x) ◦Dxϕ : TxM → T . See page 166.
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