Differential Geometry; Chapter IV Study Guide

The following is a brief list of topics covered in Chapter IV, "Metric Vector Spaces," of Dodson and Poston's Tensor Geometry, 2nd edition. This list is not meant to be comprehensive, but only gives a list of several important topics.

IV.1. Metrics.

Bilinear form, symmetric, anti-symmetric, non-degenerate, positive/negative definite, indefinite, metric tensor, inner product, metric vector space, inner product space, standard inner product on \mathbb{R}^{n}, Lorentz metric on \mathbb{R}^{4}, determinant metric, length of a vector with respect to a metric tensor \mathbf{G}, spacetime interval, timelike, spacelike, lightlike, lightcones, norm, Triangle Inequality, norm induced by an inner product, size of a vector, unit vector, Schwarz's Inequality (Lemma IV.1.07), orthogonal vectors, perp space (or orthogonal complement), mappings \mathbf{G}_{\downarrow} and \mathbf{G}_{\uparrow} in metric vector space (X, \mathbf{G}), metric tensor and metric inner product \mathbf{G}^{*} induced by metric tensor and metric inner product \mathbf{G}.

IV.2. Maps.

Orthogonal projection operator and resulting components of a vector, orthogonal complements in the Lorentz space \mathbb{H}^{2}, orthogonal complement S^{\perp}, decomposition of \mathbf{x} as an element of subspace S and an element of subspace S^{\perp} (Lemma IV.2.04), direct sum of subspaces S and S^{\perp}, dimensions of S and S^{\perp} (Corollary IV.2.05), isometry (orthogonal operator or unitary operator), adjoint of a linear operator, self adjoint linear operator and properties (Lemma IV.2.A), \mathbf{A} is an orthogonal operator if and only if $\mathbf{A}^{T} \mathbf{A}=\mathbf{I}$ (Lemma IV.2.09), \mathbf{A} is orthogonal if and only it \mathbf{A}^{T} is orthogonal (Corollary IV.2.10).

IV.3. Coordinates.

Matrix representations of \mathbf{G}_{\downarrow} and \mathbf{G}_{\uparrow} with respect to bases β and β^{\prime} (Note IV.3.B), matrix representation of \mathbf{G}^{*} (Note IV.3.C), orthogonal set of vectors, orthonormal set, orthonormal basis, every metric vector space has at least one orthonormal basis (Theorem IV.2.05), signature of metric G, Sylvester's Law of Inertia (Corollary IV.3.10), the signature of \mathbf{G}^{*} equals the signature of \mathbf{G} (Corollary IV.3.12), the matrix representation relationship $\left[\mathbf{A}^{T}\right]_{\beta}^{\beta}=\left([\mathbf{A}]_{\beta}^{\beta}\right)^{t}$ where β is an orthonormal basis (Lemma IV.3.13; T represents that adjoint
of a linear operator and t represents the transpose of a matrix), entries of the matrices representing $\left[\mathbf{A}^{T}\right]$ and $[\mathbf{A}]^{t}$ with respect to an orthonormal basis (Lemma IV.3.14) and the corresponding result for self-adjoint operators (Corollary IV.3.15), orthogonal linear operators have matrix representations with orthonormal row and columns (Lemma IV.3.16).

IV.4. Diagonalizing Symmetric Operators.

Fundamental Theorem of Real Symmetric Matrices, a maximal vector for a linear operator in an inner product space (Definition IV.4.01), operator norm, symmetric linear operator, eigenvectors of \mathbf{A} for eigenvalue $+\|\mathbf{A}\|$ or $-\|\mathbf{A}\|$ (Lemma IV.4.03), operator on \mathbf{x}^{\perp} induced by \mathbf{A} (Lemma IV.4.04), symmetric linear operators yield orthonormal bases of eigenvectors (Theorem IV.4.05), comments about eigenvalues with respect to difference bases (Note IV.4.A), dimension of an eigenspace for a symmetric operator (Corollary IV.4.07), eigenvalues of a symmetric linear operator are real (Corollary IV.4.08), principal directions of a symmetric bilinear form, isotropic linear operator in an inner product space, orthonormal bases of eigenvectors for Lorentz space \mathbb{L}^{4} (Lemma IV.4.13).

