Differential Geometry; Chapter V Study Guide

The following is a brief list of topics covered in Chapter V, "Tensors and Multilinear Forms," of Dodson and Poston's Tensor Geometry, 2nd edition. This list is not meant to be comprehensive, but only gives a list of several important topics.

V.1. Multilinear Forms.

Multilinear mapping, mulitlinear form, tensor product of covariant vectors from the same space $\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{n} \in X^{*}$, tensor product of covariant vectors from different spaces $\mathbf{g}_{1} \in X_{1}^{*}, \mathbf{g}_{2} \in X_{2}^{*}, \ldots, \mathbf{g}_{n} \in X_{n}^{*}$, mapping $\otimes: X_{1}^{*} \times X_{2}^{*} \times$ $\cdots \times X_{n}^{*} \rightarrow L\left(X_{1}, X_{2}, \ldots, X_{n} ; \mathbb{R}\right)$ defined as $\otimes\left(\left(\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{n}\right)\right)=\mathbf{g}_{1} \otimes \mathbf{g}_{2} \otimes$ $\cdots \otimes \mathrm{g}_{n}$, tensor product of vector spaces $X_{1}^{*}, X_{2}^{*}, \ldots, X_{n}^{*}$, noncommutivity of tensor product of vectors, simple tensor (or pure tensor), sum of simple tensors may not be simple, \otimes is multilinear (T i), existence of a unique mapping as given in (T ii), tensor product of vector spaces $X_{1}, X_{2}, \ldots, X_{n}$ (Definition V.1.04 and Lemma V.1.05), properties of the tensor product of vectors (T A) and (T S) (Lemma V.1.A), $X_{1}^{*} \otimes X_{2}^{*} \otimes \cdots \otimes X_{n}^{*} \cong\left(X_{1} \otimes X_{2} \otimes \cdots \otimes X_{n}\right)^{*}$ (Lemma V.1.07), $L\left(X_{1} ; X_{2}\right) \cong X_{1}^{*} \otimes X_{2}$ (Lemma V.1.08), tensor product of linear maps $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{n}$, tensors of X covariant of degree h and contravariant of degree k, type of a tensor, contraction map, coordinates of tensors (such as $x_{\ell m}^{i j k}$), transformations of coordinates of tensors, "contracting over j and ℓ," raising and lowering indices for coordinates with \mathbf{G}_{\uparrow} and \mathbf{G}_{\downarrow}.

