Chapter 2. Analytic Functions
Section 2.17. Limits Involving the Point at Infinity—Proofs of Theorems
Table of contents

1 Theorem 2.17.1
Theorem 2.17.1

Theorem 2.17.1. If \(z_0, w_0 \in \mathbb{C} \) then

\[
\begin{align*}
\lim_{z \to z_0} f(z) &= \infty \quad \text{if and only if} \quad \lim_{z \to z_0} \frac{1}{f(z)} = 0 \\
\lim_{z \to \infty} f(z) &= w_0 \quad \text{if and only if} \quad \lim_{z \to 0} f(1/z) = w_0, \quad \text{and} \\
\lim_{z \to \infty} f(z) &= \infty \quad \text{if and only if} \quad \lim_{z \to 0} \frac{1}{f(1/z)} = 0.
\end{align*}
\]

Proof. Let \(\varepsilon > 0 \) and define \(g(z) = 1/f(z) \), \(h(z) = f(1/z) \), and \(k(z) = 1/f(1/z) \).
Theorem 2.17.1

Theorem 2.17.1. If $z_0, w_0 \in \mathbb{C}$ then

\[
\lim_{z \to z_0} f(z) = \infty \quad \text{if and only if} \quad \lim_{z \to z_0} 1/f(z) = 0
\]
\[
\lim_{z \to \infty} f(z) = w_0 \quad \text{if and only if} \quad \lim_{z \to 0} f(1/z) = w_0, \quad \text{and}
\]
\[
\lim_{z \to \infty} f(z) = \infty \quad \text{if and only if} \quad \lim_{z \to 0} 1/f(1/z) = 0.
\]

Proof. Let $\varepsilon > 0$ and define $g(z) = 1/f(z)$, $h(z) = f(1/z)$, and $k(z) = 1/f(1/z)$.

First, suppose $\lim_{z \to z_0} f(z) = \infty$. Then (by definition) there exists $\delta > 0$ such that $0 < |z - z_0| < \delta$ implies $1/|f(z)| < \varepsilon$. So $0 < |z - z_0| < \delta$ implies $1/|f(z)| = |g(z) - 0| < \varepsilon$.
Theorem 2.17.1

Theorem 2.17.1. If $z_0, w_0 \in \mathbb{C}$ then

\[
\begin{align*}
\lim_{z \to z_0} f(z) &= \infty \quad \text{if and only if} \quad \lim_{z \to z_0} 1/f(z) = 0 \\
\lim_{z \to \infty} f(z) &= w_0 \quad \text{if and only if} \quad \lim_{z \to 0} f(1/z) = w_0, \quad \text{and} \\
\lim_{z \to \infty} f(z) &= \infty \quad \text{if and only if} \quad \lim_{z \to 0} 1/f(1/z) = 0.
\end{align*}
\]

Proof. Let $\varepsilon > 0$ and define $g(z) = 1/f(z)$, $h(z) = f(1/z)$, and $k(z) = 1/f(1/z)$.

First, suppose $\lim_{z \to z_0} f(z) = \infty$. Then (by definition) there exists $\delta > 0$ such that $0 < |z - z_0| < \delta$ implies $1/|f(z)| < \varepsilon$. So $0 < |z - z_0| < \delta$ implies $1/|f(z)| = |g(z) - 0| < \varepsilon$. Therefore (by definition)

$\lim_{z \to z_0} g(z) = \lim_{z \to z_0} 1/f(z) = 0$.
Theorem 2.17.1. If \(z_0, w_0 \in \mathbb{C} \) then

\[
\begin{align*}
\lim_{z \to z_0} f(z) &= \infty \quad \text{if and only if} \quad \lim_{z \to z_0} 1/f(z) = 0 \\
\lim_{z \to \infty} f(z) &= w_0 \quad \text{if and only if} \quad \lim_{z \to 0} f(1/z) = w_0, \quad \text{and} \\
\lim_{z \to \infty} f(z) &= \infty \quad \text{if and only if} \quad \lim_{z \to 0} 1/f(1/z) = 0.
\end{align*}
\]

Proof. Let \(\varepsilon > 0 \) and define \(g(z) = 1/f(z) \), \(h(z) = f(1/z) \), and \(k(z) = 1/f(1/z) \).

First, suppose \(\lim_{z \to z_0} f(z) = \infty \). Then (by definition) there exists \(\delta > 0 \) such that \(0 < |z - z_0| < \delta \) implies \(1/|f(z)| < \varepsilon \). So \(0 < |z - z_0| < \delta \) implies \(1/|f(z)| = |g(z) - 0| < \varepsilon \). Therefore (by definition)

\[
\lim_{z \to z_0} g(z) = \lim_{z \to z_0} 1/f(z) = 0.
\]

Next, suppose \(\lim_{z \to z_0} 1/f(z) = 0 \). Then (by definition) there exists \(\delta > 0 \) such that \(0 < |z - z_0| < \delta \) implies \(|1/f(z) - 0| < \varepsilon \). So \(0 < |z - z_0| < \delta \) implies \(|1/f(z) - 0| = 1/|f(z)| < \varepsilon \).
Theorem 2.17.1

Theorem 2.17.1. If \(z_0, w_0 \in \mathbb{C} \) then

\[
\begin{align*}
\lim_{z \to z_0} f(z) &= \infty \quad \text{if and only if} \quad \lim_{z \to z_0} 1/f(z) = 0 \\
\lim_{z \to \infty} f(z) &= w_0 \quad \text{if and only if} \quad \lim_{z \to 0} f(1/z) = w_0, \quad \text{and} \\
\lim_{z \to \infty} f(z) &= \infty \quad \text{if and only if} \quad \lim_{z \to 0} 1/f(1/z) = 0.
\end{align*}
\]

Proof. Let \(\varepsilon > 0 \) and define \(g(z) = 1/f(z) \), \(h(z) = f(1/z) \), and \(k(z) = 1/f(1/z) \).

First, suppose \(\lim_{z \to z_0} f(z) = \infty \). Then (by definition) there exists \(\delta > 0 \) such that \(0 < |z - z_0| < \delta \) implies \(1/|f(z)| < \varepsilon \). So \(0 < |z - z_0| < \delta \) implies \(1/|f(z)| = |g(z) - 0| < \varepsilon \). Therefore (by definition)
\[
\lim_{z \to z_0} g(z) = \lim_{z \to z_0} 1/f(z) = 0.
\]

Next, suppose \(\lim_{z \to z_0} 1/f(z) = 0 \). Then (by definition) there exists \(\delta > 0 \) such that \(0 < |z - z_0| < \delta \) implies \(|1/f(z) - 0| < \varepsilon \). So \(0 < |z - z_0| < \delta \) implies \(|1/f(z) - 0| = 1/|f(z)| < \varepsilon \). Therefore (by definition)
\[
\lim_{z \to z_0} f(z) = \infty.
\]
Theorem 2.17.1

Theorem 2.17.1. If $z_0, w_0 \in \mathbb{C}$ then

\[
\begin{align*}
\lim_{z \to z_0} f(z) &= \infty \quad \text{if and only if} \quad \lim_{z \to z_0} 1/f(z) = 0, \\
\lim_{z \to \infty} f(z) &= w_0 \quad \text{if and only if} \quad \lim_{z \to 0} f(1/z) = w_0, \quad \text{and} \\
\lim_{z \to \infty} f(z) &= \infty \quad \text{if and only if} \quad \lim_{z \to 0} 1/f(1/z) = 0.
\end{align*}
\]

Proof. Let $\varepsilon > 0$ and define $g(z) = 1/f(z)$, $h(z) = f(1/z)$, and $k(z) = 1/f(1/z)$.

First, suppose $\lim_{z \to z_0} f(z) = \infty$. Then (by definition) there exists $\delta > 0$ such that $0 < |z - z_0| < \delta$ implies $1/|f(z)| < \varepsilon$. So $0 < |z - z_0| < \delta$ implies $1/|f(z)| = |g(z) - 0| < \varepsilon$. Therefore (by definition)

$\lim_{z \to z_0} g(z) = \lim_{z \to z_0} 1/f(z) = 0$.

Next, suppose $\lim_{z \to z_0} 1/f(z) = 0$. Then (by definition) there exists $\delta > 0$ such that $0 < |z - z_0| < \delta$ implies $|1/f(z) - 0| < \varepsilon$. So $0 < |z - z_0| < \delta$ implies $|1/f(z) - 0| = 1/|f(z)| < \varepsilon$. Therefore (by definition)

$\lim_{z \to z_0} f(z) = \infty.$
Theorem 2.17.1 (continued 1)

Proof (continued). Second, suppose \(\lim_{z \to \infty} f(z) = w_0 \). Then (by definition) there exists \(\delta > 0 \) such that \(1/|z| < \delta \) implies \(|f(z) - w_0| < \varepsilon \). So (replacing \(z \) with \(1/z \)) \(0 < |z| = |z - 0| < \delta \) implies \(|f(1/z) - w_0| = |h(z) - w_0| < \varepsilon \). Therefore (by definition) \(\lim_{z \to 0} h(z) = \lim_{z \to 0} f(1/z) = w_0 \).
Theorem 2.17.1 (continued 1)

Proof (continued). Second, suppose \(\lim_{z \to \infty} f(z) = w_0 \). Then (by definition) there exists \(\delta > 0 \) such that \(1/|z| < \delta \) implies \(|f(z) - w_0| < \varepsilon \). So (replacing \(z \) with \(1/z \)) \(0 < |z| = |z - 0| < \delta \) implies \(|f(1/z) - w_0| = |h(z) - w_0| < \varepsilon \). Therefore (by definition) \(\lim_{z \to 0} h(z) = \lim_{z \to 0} f(1/z) = w_0 \).

Suppose \(\lim_{z \to 0} f(1/z) = w_0 \). Then (by definition) there exists \(\delta > 0 \) such that \(0 < |z - 0| < \delta \) implies \(|f(1/z) - w_0| < \varepsilon \). So (replacing \(z \) with \(1/z \)) \(0 < |1/z - 0| = 1/|z| < \delta \) implies \(|f(z) - w_0| < \varepsilon \).
Theorem 2.17.1 (continued 1)

Proof (continued). Second, suppose \(\lim_{z \to \infty} f(z) = w_0 \). Then (by definition) there exists \(\delta > 0 \) such that \(1/|z| < \delta \) implies \(|f(z) - w_0| < \varepsilon \).

So (replacing \(z \) with \(1/z \)) \(0 < |z| = |z - 0| < \delta \) implies \(|f(1/z) - w_0| = |h(z) - w_0| < \varepsilon \). Therefore (by definition)
\[
\lim_{z \to 0} h(z) = \lim_{z \to 0} f(1/z) = w_0.
\]

Suppose \(\lim_{z \to 0} f(1/z) = w_0 \). Then (by definition) there exists \(\delta > 0 \) such that \(0 < |z - 0| < \delta \) implies \(|f(1/z) - w_0| < \varepsilon \). So (replacing \(z \) with \(1/z \))
\[
0 < |1/z - 0| = 1/|z| < \delta \text{ implies } |f(z) - w_0| < \varepsilon.
\]

Therefore (by definition)
\[
\lim_{z \to \infty} f(z) = w_0.
\]
Proof (continued). Second, suppose $\lim_{z \to \infty} f(z) = w_0$. Then (by definition) there exists $\delta > 0$ such that $1/|z| < \delta$ implies $|f(z) - w_0| < \varepsilon$. So (replacing z with $1/z$) $0 < |z| = |z - 0| < \delta$ implies $|f(1/z) - w_0| = |h(z) - w_0| < \varepsilon$. Therefore (by definition) $\lim_{z \to 0} h(z) = \lim_{z \to 0} f(1/z) = w_0$.

Suppose $\lim_{z \to 0} f(1/z) = w_0$. Then (by definition) there exists $\delta > 0$ such that $0 < |z - 0| < \delta$ implies $|f(1/z) - w_0| < \varepsilon$. So (replacing z with $1/z$) $0 < |1/z - 0| = 1/|z| < \delta$ implies $|f(z) - w_0| < \varepsilon$. Therefore (by definition) $\lim_{z \to \infty} f(z) = w_0$.

Third, suppose $\lim_{z \to \infty} f(z) = \infty$. Then (by definition) there exists $\delta > 0$ such that $1/|z| < \delta$ implies $1/|f(z)| < \varepsilon$. So (replacing z with $1/z$) $0 < |z| < \delta$ implies $|1/f(1/z)| < \varepsilon$. So $0 < |z - 0| < \delta$ implies $|k(z) - 0| < \varepsilon$.
Theorem 2.17.1 (continued 1)

Proof (continued). Second, suppose \(\lim_{z \to \infty} f(z) = w_0 \). Then (by definition) there exists \(\delta > 0 \) such that \(1/|z| < \delta \) implies \(|f(z) - w_0| < \varepsilon \). So (replacing \(z \) with \(1/z \)) \(0 < |z| = |z - 0| < \delta \) implies \(|f(1/z) - w_0| = |h(z) - w_0| < \varepsilon \). Therefore (by definition) \(\lim_{z \to 0} h(z) = \lim_{z \to 0} f(1/z) = w_0 \).

Suppose \(\lim_{z \to 0} f(1/z) = w_0 \). Then (by definition) there exists \(\delta > 0 \) such that \(0 < |z - 0| < \delta \) implies \(|f(1/z) - w_0| < \varepsilon \). So (replacing \(z \) with \(1/z \)) \(0 < |1/z - 0| = 1/|z| < \delta \) implies \(|f(z) - w_0| < \varepsilon \). Therefore (by definition) \(\lim_{z \to \infty} f(z) = w_0 \).

Third, suppose \(\lim_{z \to \infty} f(z) = \infty \). Then (by definition) there exists \(\delta > 0 \) such that \(1/|z| < \delta \) implies \(1/|f(z)| < \varepsilon \). So (replacing \(z \) with \(1/z \)) \(0 < |z| < \delta \) implies \(|1/f(1/z)| < \varepsilon \). So \(0 < |z - 0| < \delta \) implies \(|k(z) - 0| < \varepsilon \). Therefore (by definition) \(\lim_{z \to 0} k(z) = \lim_{z \to 0} 1/f(1/z) = 0 \).
Theorem 2.17.1 (continued 1)

Proof (continued). Second, suppose \(\lim_{z \to \infty} f(z) = w_0 \). Then (by definition) there exists \(\delta > 0 \) such that \(1/|z| < \delta \) implies \(|f(z) - w_0| < \varepsilon \).

So (replacing \(z \) with \(1/z \)) \(0 < |z| = |z - 0| < \delta \) implies \(|f(1/z) - w_0| = |h(z) - w_0| < \varepsilon \). Therefore (by definition) \(\lim_{z \to 0} h(z) = \lim_{z \to 0} f(1/z) = w_0 \).

Suppose \(\lim_{z \to 0} f(1/z) = w_0 \). Then (by definition) there exists \(\delta > 0 \) such that \(0 < |z - 0| < \delta \) implies \(|f(1/z) - w_0| < \varepsilon \). So (replacing \(z \) with \(1/z \)) \(0 < |1/z - 0| = 1/|z| < \delta \) implies \(|f(z) - w_0| < \varepsilon \). Therefore (by definition) \(\lim_{z \to \infty} f(z) = w_0 \).

Third, suppose \(\lim_{z \to \infty} f(z) = \infty \). Then (by definition) there exists \(\delta > 0 \) such that \(1/|z| < \delta \) implies \(1/|f(z)| < \varepsilon \). So (replacing \(z \) with \(1/z \)) \(0 < |z| < \delta \) implies \(|1/f(1/z)| < \varepsilon \). So \(0 < |z - 0| < \delta \) implies \(|k(z) - 0| < \varepsilon \). Therefore (by definition) \(\lim_{z \to 0} k(z) = \lim_{z \to 0} 1/f(1/z) = 0 \).
Theorem 2.17.1. If $z_0, w_0 \in \mathbb{C}$ then

\[
\lim_{z \to z_0} f(z) = \infty \quad \text{if and only if} \quad \lim_{z \to z_0} \frac{1}{f(z)} = 0.
\]

\[
\lim_{z \to \infty} f(z) = w_0 \quad \text{if and only if} \quad \lim_{z \to 0} f(1/z) = w_0, \quad \text{and}
\]

\[
\lim_{z \to \infty} f(z) = \infty \quad \text{if and only if} \quad \lim_{z \to 0} \frac{1}{f(1/z)} = 0.
\]

Proof (continued). Suppose $\lim_{z \to 0} \frac{1}{f(1/z)} = 0$. Then (by definition) there exists $\delta > 0$ such that $0 < |z - 0| < \delta$ implies $|1/f(1/z) - 0| < \varepsilon$. So (replacing z with $1/z$) $0 < |1/z| < \delta$ implies $|1/f(z)| < \varepsilon$. Therefore (by definition) $\lim_{z \to \infty} f(z) = \infty$. \qed
Theorem 2.17.1 (continued 2)

Theorem 2.17.1. If \(z_0, w_0 \in \mathbb{C} \) then

\[
\begin{align*}
\lim_{z \to z_0} f(z) &= \infty \quad \text{if and only if} \quad \lim_{z \to z_0} \frac{1}{f(z)} = 0 \\
\lim_{z \to \infty} f(z) &= w_0 \quad \text{if and only if} \quad \lim_{z \to 0} f(1/z) = w_0, \quad \text{and} \\
\lim_{z \to \infty} f(z) &= \infty \quad \text{if and only if} \quad \lim_{z \to 0} \frac{1}{f(1/z)} = 0.
\end{align*}
\]

Proof (continued). Suppose \(\lim_{z \to 0} \frac{1}{f(1/z)} = 0 \). Then (by definition) there exists \(\delta > 0 \) such that \(0 < |z - 0| < \delta \) implies \(|1/f(1/z) - 0| < \varepsilon \). So (replacing \(z \) with \(1/z \)) \(0 < |1/z| < \delta \) implies \(|1/f(z)| < \varepsilon \). Therefore (by definition) \(\lim_{z \to \infty} f(z) = \infty \). \(\square \)