Chapter 2. Analytic Functions

Section 2.21. Cauchy-Riemann Equations—Proofs of Theorems
Theorem 2.21.A. Differentiable Implies the C-R Equations
Theorem 2.21.A

Theorem 2.21.A. Differentiable Implies the Cauchy-Riemann Equations
Suppose that $f(z) = u(x, y) + iv(x, y)$ and that f' exists at a point $z_0 = x_0 + iy_0$. Then the first-order partial derivatives of u and v must exist at (x_0, y_0), and they must satisfy the Cauchy-Riemann equations:

$$\frac{\partial}{\partial x}[u(x, y)] = \frac{\partial}{\partial y}[v(x, y)] \quad \text{and} \quad \frac{\partial}{\partial y}[u(x, y)] = -\frac{\partial}{\partial x}[v(x, y)]$$

(or with subscripts representing partial derivatives, $u_x = v_y$ and $u_y = -v_x$) at (x_0, y_0). Also, $f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0)$.

Proof. Suppose f' exists at $z_0 = x_0 + iy_0$. Let $\Delta z = \Delta x + i\Delta y$. Then with $w = f(z)$ we have:
Theorem 2.21.A. Differentiable Implies the Cauchy-Riemann Equations

Suppose that \(f(z) = u(x, y) + iv(x, y) \) and that \(f' \) exists at a point \(z_0 = x_0 + iy_0 \). Then the first-order partial derivatives of \(u \) and \(v \) must exist at \((x_0, y_0) \), and they must satisfy the Cauchy-Riemann equations:

\[
\frac{\partial}{\partial x} [u(x, y)] = \frac{\partial}{\partial y} [v(x, y)] \quad \text{and} \quad \frac{\partial}{\partial y} [u(x, y)] = -\frac{\partial}{\partial x} [v(x, y)]
\]

(or with subscripts representing partial derivatives, \(u_x = v_y \) and \(u_y = -v_x \)) at \((x_0, y_0) \). Also, \(f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0) \).

Proof. Suppose \(f' \) exists at \(z_0 = x_0 + iy_0 \). Let \(\Delta z = \Delta x + i\Delta y \). Then with \(w = f(z) \) we have:
Theorem 2.21.A (continued 1)

Proof (continued).

\[
\frac{\Delta w}{\Delta z} = \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0)}{\Delta x + i\Delta y} + i\frac{v(x_0 + \Delta x, y_0 + \Delta y) - v(x_0, y_0)}{\Delta x + i\Delta y}
\]

Then \(f'(z_0) = \lim_{\Delta z \to 0}(\Delta w/\Delta z)\), so by Theorem 2.16.1,

\[
f'(z_0) = \lim_{(\Delta x, \Delta y) \to (0,0)} \text{Re}\left(\frac{\Delta w}{\Delta z}\right) + i \lim_{(\Delta x, \Delta y) \to (0,0)} \text{Im}\left(\frac{\Delta w}{\Delta z}\right). \quad (3)
\]

We now apply the contrapositive of the Two-Path Test for the Nonexistence of a Limit for a function of two variables (see Note 2.15.A), which implies that if a limit exists as \(\Delta z \to 0\) then the limit exists and is the same along all paths for which \(\Delta z \to 0\).
Theorem 2.21.A (continued 1)

Proof (continued).

\[
\frac{\Delta w}{\Delta z} = \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{\{u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0)\} + i\{v(x_0 + \Delta x, y_0 + \Delta y) - v(x_0, y_0)\}}{\Delta x + i\Delta y}
\]

Then \(f'(z_0) = \lim_{\Delta z \to 0}(\Delta w/\Delta z)\), so by Theorem 2.16.1,

\[
f'(z_0) = \lim_{(\Delta x, \Delta y) \to (0,0)} \text{Re} \left(\frac{\Delta w}{\Delta z} \right) + i \lim_{(\Delta x, \Delta y) \to (0,0)} \text{Im} \left(\frac{\Delta w}{\Delta z} \right).
\] \hspace{1cm} (3)

We now apply the contrapositive of the Two-Path Test for the Nonexistence of a Limit for a function of two variables (see Note 2.15.A), which implies that if a limit exists as \(\Delta z \to 0\) then the limit exists and is the same along all paths for which \(\Delta z \to 0\).
Theorem 2.21.A (continued 2)

Proof (continued). In particular, we can let $\Delta z \to 0$ along the real axis (where $\Delta y = 0$) or along the imaginary axis (where $\Delta x = 0$).

We first consider $\Delta z \to 0$ along the real axis and have for the real and imaginary parts of equation (3) that

$$
\lim_{(\Delta x, \Delta y) \to (0,0)} \text{Re} \left(\frac{\Delta w}{\Delta z} \right) = \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x}
$$

$$
= \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} = u_x(x_0, y_0)
$$
Theorem 2.21.A (continued 2)

Proof (continued). In particular, we can let $\Delta z \to 0$ along the real axis (where $\Delta y = 0$) or along the imaginary axis (where $\Delta x = 0$). We first consider $\Delta z \to 0$ along the real axis and have for the real and imaginary parts of equation (3) that

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \text{Re} \left(\frac{\Delta w}{\Delta z} \right) = \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} = u_x(x_0, y_0)$$

and

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \text{Im} \left(\frac{\Delta w}{\Delta z} \right) = \lim_{\Delta x \to 0} \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x} = v_x(x_0, y_0).$$
Theorem 2.21.A (continued 2)

Proof (continued). In particular, we can let \(\Delta z \to 0 \) along the real axis (where \(\Delta y = 0 \)) or along the imaginary axis (where \(\Delta x = 0 \)). We first consider \(\Delta z \to 0 \) along the real axis and have for the real and imaginary parts of equation (3) that

\[
\lim_{(\Delta x, \Delta y) \to (0,0)} \text{Re} \left(\frac{\Delta w}{\Delta z} \right) = \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} = u_x(x_0, y_0)
\]

and

\[
\lim_{(\Delta x, \Delta y) \to (0,0)} \text{Im} \left(\frac{\Delta w}{\Delta z} \right) = \lim_{\Delta x \to 0} \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x} = v_x(x_0, y_0).
\]

So by (3), \(f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0) \) and \(f' \) has the form as claimed.
Proof (continued). In particular, we can let $\Delta z \to 0$ along the real axis (where $\Delta y = 0$) or along the imaginary axis (where $\Delta x = 0$). We first consider $\Delta z \to 0$ along the real axis and have for the real and imaginary parts of equation (3) that

$$\lim_{(\Delta x, \Delta y) \to (0, 0)} \text{Re} \left(\frac{\Delta w}{\Delta z} \right) = \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} = u_x(x_0, y_0)$$

and

$$\lim_{(\Delta x, \Delta y) \to (0, 0)} \text{Im} \left(\frac{\Delta w}{\Delta z} \right) = \lim_{\Delta x \to 0} \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x} = v_x(x_0, y_0).$$

So by (3), $f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0)$ and f' has the form as claimed.
Theorem 2.21.A (continued 3)

Proof (continued). Second, with $\Delta z \to 0$ along the imaginary axis so that $\Delta z = i \Delta y$, $\Delta y \to 0$, and $\Delta x = 0$, we have

$$\frac{\Delta w}{\Delta z} = \frac{u(x_0, y_0 + \Delta y) - v(x_0, y_0)}{i \Delta y} + i \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{i \Delta y}$$

$$= \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{\Delta y} - i \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{\Delta y}$$

and so

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \Re \left(\frac{\Delta w}{\Delta z} \right) = \lim_{\Delta y \to 0} \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{\Delta y} = v_y(x_0, y_0)$$

and

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \Im \left(\frac{\Delta w}{\Delta z} \right) = \lim_{\Delta y \to 0} - \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{\Delta y} = -u_y(x_0, y_0).$$
Proof (continued). Second, with $\Delta z \to 0$ along the imaginary axis so that $\Delta z = i \Delta y$, $\Delta y \to 0$, and $\Delta x = 0$, we have

$$\frac{\Delta w}{\Delta z} = \frac{u(x_0, y_0 + \Delta y) - v(x_0, y_0)}{i \Delta y} + i \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{i \Delta y}$$

$$= \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{\Delta y} - i \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{\Delta y}$$

and so

$$\lim_{(\Delta x, \Delta y) \to (0, 0)} \text{Re} \left(\frac{\Delta w}{\Delta z} \right) = \lim_{\Delta y \to 0} \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{\Delta y} = v_y(x_0, y_0)$$

and

$$\lim_{(\Delta x, \Delta y) \to (0, 0)} \text{Im} \left(\frac{\Delta w}{\Delta z} \right) = \lim_{\Delta y \to 0} - \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{\Delta y} = -u_y(x_0, y_0).$$

So by (3), $f'(z_0) = v_y(x_0, y_0) - i u_y(x_0, y_0)$.
Theorem 2.21.A (continued 3)

Proof (continued). Second, with $\Delta z \to 0$ along the imaginary axis so that $\Delta z = i\Delta y$, $\Delta y \to 0$, and $\Delta x = 0$, we have

$$\frac{\Delta w}{\Delta z} = \frac{u(x_0, y_0 + \Delta y) - v(x_0, y_0)}{i\Delta y} + i \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{i\Delta y}$$

$$= \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{\Delta y} - i \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{\Delta y}$$

and so

$$\lim_{(\Delta x, \Delta y) \to (0, 0)} \text{Re} \left(\frac{\Delta w}{\Delta z} \right) = \lim_{\Delta y \to 0} \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{\Delta y} = v_y(x_0, y_0)$$

and

$$\lim_{(\Delta x, \Delta y) \to (0, 0)} \text{Im} \left(\frac{\Delta w}{\Delta z} \right) = \lim_{\Delta y \to 0} - \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{\Delta y} = -u_y(x_0, y_0).$$

So by (3), $f'(z_0) = v_y(x_0, y_0) - iu_y(x_0, y_0)$.
Theorem 2.21.A. Differentiable Implies the Cauchy-Riemann Equations

Suppose that \(f(z) = u(x, y) + iv(x, y) \) and that \(f' \) exists at a point \(z_0 = x_0 + iy_0 \). Then the first-order partial derivatives of \(u \) and \(v \) must exist at \((x_0, y_0) \), and they must satisfy the Cauchy-Riemann equations:

\[
\frac{\partial}{\partial x}[u(x, y)] = \frac{\partial}{\partial y}[v(x, y)] \quad \text{and} \quad \frac{\partial}{\partial y}[u(x, y)] = -\frac{\partial}{\partial x}[v(x, y)]
\]

(or with subscripts representing partial derivatives, \(u_x = v_y \) and \(u_y = -v_x \)) at \((x_0, y_0) \). Also, \(f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0) \).

Proof (continued). Since \(f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0) = v_y(x_0, y_0) - iu_y(x_0, y_0) \), then we must have \(u_x(x_0, y_0) = v_y(x_0, y_0) \) and \(v_x(x_0, y_0) = -u_y(x_0, y_0) \).