Chapter 2. Analytic Functions
Section 2.22. Sufficient Conditions for Differentiability—Proofs of Theorems

Theorem 2.22.A

The Cauchy-Riemann Equations and Continuity Imply Differentiability
Let the function \(f(z) = u(x, y) + iv(x, y) \) be defined throughout some \(\varepsilon \) neighborhood of a point \(z_0 = x_0 + iy_0 \), and suppose that

(a) the first-order partial derivatives of the functions \(u \) and \(v \) with respect to \(x \) and \(y \) exist everywhere in the neighborhood, and

(b) those partial derivatives are continuous at \((x_0, y_0) \) and satisfy the Cauchy-Riemann equations \(u_x(x_0, y_0) = v_y(x_0, y_0) \) and \(y_x(x_0, y_0) = -v_x(x_0, y_0) \).
Then \(f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0) \).

Proof. We present the proof given by Brown and Churchill. A more self-contained proof based on the Mean Value Theorem is given in my notes for Complex Analysis 1 (MATH 5510) on III.2. Analytic Functions.

Theorem 2.22.A (continued)

Proof (continued). Let \(\Delta z = \Delta x + i\Delta y \) where \(0 < |\Delta z| < \varepsilon \) and let \(\Delta w = f(z_0 + \Delta z) - f(z_0) \). We take \(\Delta w = \Delta u + i\Delta v \) where

\[
\Delta u = u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0), \quad \Delta v = v(x_0 + \Delta x, y_0 + \Delta y) - v(x_0, y_0).
\]

By (b), the first order partial derivatives of \(u \) and \(v \) are continuous at \((x_0, y_0) \), so by a result from advanced calculus (see W. Kaplan’s Advanced Calculus, 5th ed., page 86 (2003)) we may write

\[
\Delta u = u_x(x_0, y_0)\Delta x + u_y(x_0, y_0)\Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y
\]
\[
\Delta v = v_x(x_0, y_0)\Delta x + v_y(x_0, y_0)\Delta y + \varepsilon_3 \Delta x + \varepsilon_4 \Delta y
\]
where \(\varepsilon_i \to 0 \) as \((\Delta x, \Delta y) \to (0, 0) \) for \(i = 1, 2, 3, 4 \). So we can express

\[
\Delta w = (u_x(x_0, y_0)\Delta x + u_y(x_0, y_0)\Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y)
\]
\[
+ i(v_x(x_0, y_0)\Delta x + v_y(x_0, y_0)\Delta y + \varepsilon_3 \Delta x + \varepsilon_4 \Delta y).
\]

But \(|\Delta x| \leq |\Delta z| \) and \(|\Delta y| \leq |\Delta z| \) (by the Triangle Inequality, say), so

\[
|\Delta x/\Delta z| \leq 1 \quad \text{and} \quad |\Delta y/\Delta z| \leq 1.
\]
Proof (continued). Consequently,

\[|(\varepsilon_1 + i\varepsilon_3) \frac{\Delta x}{\Delta z}| = |\varepsilon_1 + i\varepsilon_3| \left| \frac{\Delta x}{\Delta z} \right| \leq |\varepsilon_1 + i\varepsilon_3| \leq |\varepsilon_1| + |\varepsilon_3| \]

and

\[|(\varepsilon_2 + i\varepsilon_4) \frac{\Delta x}{\Delta z}| = |\varepsilon_2 + i\varepsilon_4| \left| \frac{\Delta x}{\Delta z} \right| \leq |\varepsilon_2 + i\varepsilon_4| \leq |\varepsilon_2| + |\varepsilon_4|. \]

So as \(\Delta z = \Delta x + i\Delta y \rightarrow 0 \), we have that \(|(\varepsilon_1 + i\varepsilon_3) \Delta x / \Delta z| \rightarrow 0 \) and \(|(\varepsilon_2 + i\varepsilon_4) \Delta x / \Delta z| \rightarrow 0 \). Therefore,

\[
f'(z_0) = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \\
= \lim_{\Delta z \to 0} \left(u_x(x_0, y_0) + iv_x(x_0, y_0) + (\varepsilon_1 + i\varepsilon_3) \frac{\Delta x}{\Delta z} + (\varepsilon_2 + i\varepsilon_4) \frac{\Delta y}{\Delta z} \right) \\
= u_x(x_0, y_0) + iv_x(x_0, y_0).
\]