Chapter 2. Analytic Functions
Section 2.23. Polar Coordinates—Proofs of Theorems
Lemma 2.23.A.
Lemma 2.23.A. Let the function $f(z) = u(x, y) + iv(x, y)$ be defined throughout some ε neighborhood of a point $z_0 = x_0 + iy_0$, and suppose that

(a) the first-order partial derivatives of the functions u and v with respect to x and y exist everywhere in the neighborhood, and

(b) those partial derivatives are continuous at (x_0, y_0) and satisfy the Cauchy-Riemann equations $u_x(x_0, y_0) = v_y(x_0, y_0)$ and $v_x(x_0, y_0) = -u_y(x_0, y_0)$.

Then with $z_0 = r_0 \exp(i\theta_0) \neq 0$ we have

$$r_0 u_r(r_0, \theta_0) = v_\theta(r_0, \theta_0) \text{ and } u_\theta(r_0, \theta_0) = -r_0 v_r(r_0, \theta_0).$$

These are the polar coordinate forms of the Cauchy-Riemann equations.

Proof. We have $f(z) = f(x + iy) = u(x, y) + iv(x, y)$ and, for $z \neq 0$, $z = r \exp(i\theta)$. Also, $x = r \cos \theta$ and $y = r \sin \theta$.
Lemma 2.23.A

Lemma 2.23.A. Let the function \(f(z) = u(x, y) + iv(x, y) \) be defined throughout some \(\varepsilon \) neighborhood of a point \(z_0 = x_0 + iy_0 \), and suppose that

(a) the first-order partial derivatives of the functions \(u \) and \(v \) with respect to \(x \) and \(y \) exist everywhere in the neighborhood, and

(b) those partial derivatives are continuous at \((x_0, y_0) \) and satisfy the Cauchy-Riemann equations

\[
\begin{align*}
 u_x(x_0, y_0) &= v_y(x_0, y_0) \\
 y_y(x_0, y_0) &= -v_x(x_0, y_0).
\end{align*}
\]

Then with \(z_0 = r_0 \exp(i\theta) \neq 0 \) we have

\[
 r_0 u_r(r_0, \theta_0) = v_\theta(r_0, \theta_0) \quad \text{and} \quad u_\theta(r_0, \theta_0) = -r_0 v_r(r_0, \theta_0).
\]

These are the polar coordinate forms of the Cauchy-Riemann equations.

Proof. We have \(f(z) = f(x + iy) = u(x, y) + iv(x, y) \) and, for \(z \neq 0 \), \(z = r \exp(i\theta) \). Also, \(x = r \cos \theta \) and \(y = r \sin \theta \).
Lemma 2.23.A (continued)

Proof (continued). By the Chain Rule

\[
\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = u_x \cos \theta + u_y \sin \theta \quad \text{and} \quad \frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta} = -u_x r \sin \theta + u_y r \cos \theta. \quad (2)
\]

Similarly,

\[
\frac{\partial v}{\partial r} = v_x \cos \theta + v_y \sin \theta \quad \text{and} \quad \frac{\partial v}{\partial \theta} = -v_x r \sin \theta + v_y r \cos \theta. \quad (3)
\]

Assuming the Cauchy-Riemann equations in \((x, y)\) hold, we have \(u_x = v_y\) and \(u_y = -v_x\) at \((x_0, y_0)\). So from (5)

\[
v_r = v_x \cos \theta + v_y \sin \theta = -u_y \cos \theta + u_x \sin \theta \quad \text{and} \quad v_\theta = -v_x r \sin \theta + v_y r \cos \theta = u_y r \sin \theta + u_x r \cos \theta \quad (5)
\]

at \((r_0, \theta_0)\).
Lemma 2.23.A (continued)

Proof (continued). By the Chain Rule

\[
\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = u_x \cos \theta + u_y \sin \theta \tag{2}
\]

and

\[
\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta} = -u_x r \sin \theta + u_y r \cos \theta.
\]

Similarly,

\[
\frac{\partial v}{\partial r} = v_x \cos \theta + v_y \sin \theta \tag{3}
\]

and

\[
\frac{\partial v}{\partial \theta} = -v_x r \sin \theta + v_y r \cos \theta.
\]

Assuming the Cauchy-Riemann equations in \((x, y)\) hold, we have \(u_x = v_y\) and \(u_y = -v_x\) at \((x_0, y_0)\). So from (5)

\[
v_r = v_x \cos \theta + v_y \sin \theta = -u_y \cos \theta + u_x \sin \theta \tag{5}
\]

and

\[
v_\theta = -v_x r \sin \theta + v_y r \cos \theta = u_y r \sin \theta + u_x r \cos \theta
\]

at \((r_0, \theta_0)\). Comparing (2) and (5) we have \(ru_r = v_\theta\) and \(u_\theta = -rv_r\) at \((r_0, \theta_0)\).
Lemma 2.23.A (continued)

Proof (continued). By the Chain Rule

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = u_x \cos \theta + u_y \sin \theta \quad \text{and} \quad (2)$$

$$\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta} = -u_x r \sin \theta + u_y r \cos \theta.$$

Similarly,

$$\frac{\partial v}{\partial r} = v_x \cos \theta + v_y \sin \theta \quad \text{and} \quad \frac{\partial v}{\partial \theta} = -v_x r \sin \theta + v_y r \cos \theta. \quad (3)$$

Assuming the Cauchy-Riemann equations in \((x, y)\) hold, we have \(u_x = v_y\) and \(u_y = -v_x\) at \((x_0, y_0)\). So from (5)

$$v_r = v_x \cos \theta + v_y \sin \theta = -u_y \cos \theta + u_x \sin \theta \quad \text{and}$$

$$v_\theta = -v_x r \sin \theta + v_y r \cos \theta = u_y r \sin \theta + u_x r \cos \theta \quad (5)$$

at \((r_0, \theta_0)\). Comparing (2) and (5) we have \(ru_r = v_\theta\) and \(u_\theta = -rv_r\) at \((r_0, \theta_0)\).