Chapter 2. Analytic Functions
Section 2.24. Analytic Functions—Proofs of Theorems
Theorem 2.24.A.
Theorem 2.24.A

Theorem 2.24.A. If $f'(z) = 0$ everywhere in a domain D, then f must be constant throughout D.

Proof. Let $f(z) = f(x + iy) = u(x, y) + iv(x, y)$. Since $f'(z) = 0$ for all $z \in D$ (where D is an open connected set), then f is differentiable on D and so satisfies the Cauchy-Riemann equations.
Theorem 2.24.A

Theorem 2.24.A. If $f'(z) = 0$ everywhere in a domain D, then f must be constant throughout D.

Proof. Let $f(z) = f(x + iy) = u(x, y) + iv(x, y)$. Since $f'(z) = 0$ for all $z \in D$ (where D is an open connected set), then f is differentiable on D and so satisfies the Cauchy-Riemann equations. By Theorem 2.21.A, $f'(z) = f'(x + iy) = u_x(x, y) + iv_x(x, y)$ and by the Cauchy-Riemann equations $f'(z) = f'(x + iy) = v_y(x, y) - iu_y(x, y)$. Since $f'(z) = 0$ in D, then $u_x(x, y) = u_y(x, y) = 0$ and $v_x(x, y) = v_y(x, y) = 0$ at each point of D.
Theorem 2.24.A

Theorem 2.24.A. If $f'(z) = 0$ everywhere in a domain D, then f must be constant throughout D.

Proof. Let $f(z) = f(x + iy) = u(x, y) + iv(x, y)$. Since $f'(z) = 0$ for all $z \in D$ (where D is an open connected set), then f is differentiable on D and so satisfies the Cauchy-Riemann equations. By Theorem 2.21.A, $f'(z) = f'(x + iy) = u_x(x, y) + iv_x(x, y)$ and by the Cauchy-Riemann equations $f'(z) = f'(x + iy) = v_y(x, y) - iu_y(x, y)$. Since $f'(z) = 0$ in D, then $u_x(x, y) = u_y(x, y) = 0$ and $v_x(x, y) = v_y(x, y) = 0$ at each point of D.

Next, we consider $u(x, y)$ as a function of two real variables and approach it with some equipment from Calculus 3. Let P be a point in D and let P' be another point in D which lies on a line L which lies in D. Let \mathbf{U} denote the unit vector along line L directed from P to P'. Let s denote the distance along L from point P. See Figure 2.30.
Theorem 2.24.A

Theorem 2.24.A. If \(f'(z) = 0 \) everywhere in a domain \(D \), then \(f \) must be constant throughout \(D \).

Proof. Let \(f(z) = f(x + iy) = u(x, y) + iv(x, y) \). Since \(f'(z) = 0 \) for all \(z \in D \) (where \(D \) is an open connected set), then \(f \) is differentiable on \(D \) and so satisfies the Cauchy-Riemann equations. By Theorem 2.21.A, \(f'(z) = f'(x + iy) = u_x(x, y) + iv_x(x, y) \) and by the Cauchy-Riemann equations \(f'(z) = f'(x + iy) = v_y(x, y) - iu_y(x, y) \). Since \(f'(z) = 0 \) in \(D \), then \(u_x(x, y) = u_y(x, y) = 0 \) and \(v_x(x, y) = v_y(x, y) = 0 \) at each point of \(D \).

Next, we consider \(u(x, y) \) as a function of two real variables and approach it with some equipment from Calculus 3. Let \(P \) be a point in \(D \) and let \(P' \) be another point in \(D \) which lies on a line \(L \) which lies in \(D \). Let \(U \) denote the unit vector along line \(L \) directed from \(P \) to \(P' \). Let \(s \) denote the distance along \(L \) from point \(P \). See Figure 2.30.
Theorem 2.24.A (continued 1)

Proof (continued).

The directional derivative of $u(x, y)$ along line L is then $\frac{du}{ds} = \text{grad}(u) \cdot \mathbf{U}$ where $\text{grad}(u) = \nabla u = u_x(x, y)\mathbf{i} + u_y(x, y)\mathbf{j}$ (see Theorem 9 in my Calculus 3 (MATH 2110) notes on 14.5. Directional Derivatives and Gradient Vectors).
Theorem 2.24.A (continued 1)

Proof (continued).

Theorem 2.24.A.

The directional derivative of \(u(x, y) \) along line \(L \) is then

\[
\frac{du}{ds} = \nabla u \cdot \mathbf{U}
\]

where \(\nabla u = u_x(x, y) \mathbf{i} + u_y(x, y) \mathbf{j} \) (see Theorem 9 in my Calculus 3 (MATH 2110) notes on 14.5. Directional Derivatives and Gradient Vectors). Since \(u_x(x, y) = u_y(x, y) = 0 \) for all \((x, y) \in D \), then \(\nabla u = 0 \) at all points along \(L \). So \(u \) is constant on \(L \) and the value of \(u \) at point \(P \) is the same as its value at \(P' \).
Theorem 2.24.A (continued 1)

Proof (continued).

The directional derivative of \(u(x, y) \) along line \(L \) is then \(\frac{du}{ds} = \text{grad}(u) \cdot \mathbf{U} \) where \(\text{grad}(u) = \nabla u = u_x(x, y)i + u_y(x, y)j \) (see Theorem 9 in my Calculus 3 (MATH 2110) notes on 14.5. Directional Derivatives and Gradient Vectors). Since \(u_x(x, y) = u_y(x, y) = 0 \) for all \((x, y) \in D \), then \(\text{grad}(u) = 0 \) at all points along \(L \). So \(u \) is constant on \(L \) and the value of \(u \) at point \(P \) is the same as its value at \(P' \).
Theorem 2.24.A (continued 2)

Theorem 2.24.A. If $f'(z) = 0$ everywhere in a domain D, then f must be constant throughout D.

Proof (continued). Since D is an open connected set, then any two points in D can be joined by a sequence of line segments in D (the is Theorem II.2.3 in Conway’s *Functions of One Complex Variable I*; see my notes for Complex Analysis 1 on II.2. Connectedness). So if P and Q are any two points in D, then there is a sequence of line segments in D, say $PP_1, P_1P_2, \ldots, P_nQ$, joining P to Q. As argued above, the value of u is the same at each of the points $P, P_1, P_2, \ldots, P_n, Q$ and so the value of u is the same at P and Q.

\[u(x, y) = a \text{ for all } (x, y) \in D. \]

\[v(x, y) = b \text{ for all } (x, y) \in D. \]

Therefore f is constant on D and $f(z) = a + ib$ for some $a + ib \in \mathbb{C}$.

\[Complex \ Variables \ January \ 4, \ 2020 \ 5 / 5 \]
Theorem 2.24.A (continued 2)

Theorem 2.24.A. If \(f'(z) = 0 \) everywhere in a domain \(D \), then \(f \) must be constant throughout \(D \).

Proof (continued). Since \(D \) is an open connected set, then any two points in \(D \) can be joined by a sequence of line segments in \(D \) (this is Theorem II.2.3 in Conway’s *Functions of One Complex Variable I*; see my notes for Complex Analysis 1 on II.2. Connectedness). So if \(P \) and \(Q \) are any two points in \(D \), then there is a sequence of line segments in \(D \), say \(PP_1, P_1P_2, \ldots, P_nQ \), joining \(P \) to \(Q \). As argued above, the value of \(u \) is the same at each of the points \(P, P_1, P_2, \ldots, P_n, Q \) and so the value of \(u \) is the same at \(P \) and \(Q \). Since \(P \) and \(Q \) are arbitrary points in \(D \), then \(u \) is constant on \(D \), say \(u(x, y) = a \) for all \((x, y) \in D \).
Theorem 2.24.A. If \(f'(z) = 0 \) everywhere in a domain \(D \), then \(f \) must be constant throughout \(D \).

Proof (continued). Since \(D \) is an open connected set, then any two points in \(D \) can be joined by a sequence of line segments in \(D \) (the is Theorem II.2.3 in Conway’s Functions of One Complex Variable I; see my notes for Complex Analysis 1 on II.2. Connectedness). So if \(P \) and \(Q \) are any two points in \(D \), then there is a sequence of line segments in \(D \), say \(PP_1, P_1P_2, \ldots, P_nQ \), joining \(P \) to \(Q \). As argued above, the value of \(u \) is the same at each of the points \(P, P_1, P_2, \ldots, P_n, Q \) and so the value of \(u \) is the same at \(P \) and \(Q \). Since \(P \) and \(Q \) are arbitrary points in \(D \), then \(u \) is constant on \(D \), say \(u(x, y) = a \) for all \((x, y) \in D \).

Similarly, since \(v_x(x, y) = v_y(x, y) = 0 \) on \(D \), then \(v(x, y) \) is constant on \(D \), say \(v(x, y) = b \) for all \((x, y) \in D \). Therefore \(f \) is constant on \(D \) and \(f(z) = a + ib \) for some \(a + ib \in \mathbb{C} \).
Theorem 2.24.A (continued 2)

Theorem 2.24.A. If \(f'(z) = 0 \) everywhere in a domain \(D \), then \(f \) must be constant throughout \(D \).

Proof (continued). Since \(D \) is an open connected set, then any two points in \(D \) can be joined by a sequence of line segments in \(D \) (the is Theorem II.2.3 in Conway’s *Functions of One Complex Variable I*; see my notes for Complex Analysis 1 on II.2. Connectedness). So if \(P \) and \(Q \) are any two points in \(D \), then there is a sequence of line segments in \(D \), say \(PP_1, P_1P_2, \ldots, P_nQ \), joining \(P \) to \(Q \). As argued above, the value of \(u \) is the same at each of the points \(P, P_1, P_2, \ldots, P_n, Q \) and so the value of \(u \) is the same at \(P \) and \(Q \). Since \(P \) and \(Q \) are arbitrary points in \(D \), then \(u \) is constant on \(D \), say \(u(x, y) = a \) for all \((x, y) \in D \).

Similarly, since \(v_x(x, y) = v_y(x, y) = 0 \) on \(D \), then \(v(x, y) \) is constant on \(D \), say \(v(x, y) = b \) for all \((x, y) \in D \). Therefore \(f \) is constant on \(D \) and \(f(z) = a + ib \) for some \(a + ib \in \mathbb{C} \). □