Theorem 2.26.1

Theorem 2.26.1. If a function \(f(z) = u(x, y) + iv(x, y) \) is analytic in a domain \(D \), then its component functions \(u(x, y) \) and \(v(x, y) \) are harmonic in \(D \).

Proof. In Corollary 4.52.A, we will see that if \(f(z) = u(x, y) + iv(x, y) \) is analytic at a point then \(u(x, y) \) and \(v(x, y) \) have continuous partial derivatives of all orders at the point. Since \(f \) is analytic in \(D \) then by the definition of “analytic” \(f \) is differentiable on \(D \) and so the Cauchy-Riemann equations are satisfied by Theorem 2.21.A. So \(u_x = v_y \) and \(u_y = -v_x \) on \(D \). Differentiating the Cauchy-Riemann equations with respect to \(x \) gives

\[
u_{xx} = v_{yx} \quad \text{and} \quad u_{yx} = -v_{xx} . \tag{3}\]

Differentiating the Cauchy-Riemann equations with respect to \(y \) gives

\[u_{xy} = v_{yy} \quad \text{and} \quad u_{yy} = -v_{xy} . \tag{4}\]

Proof (continued).

\[
u_{xx} = v_{yy} \quad \text{and} \quad u_{xx} = -v_{xx} . \tag{3}\]

\[u_{xy} = v_{yy} \quad \text{and} \quad u_{yy} = -v_{xy} . \tag{4}\]

By “The Mixed Derivative Theorem (Clairaut’s Theorem)” (see Theorem 2 of my Calculus 3 [MATH 2110] notes on 14.3. Partial Derivatives) if the first partials and the mixed second partials are continuous then the mixed second partials are equal. So \(u_{xy} = u_{yx} \) and \(v_{xy} = v_{yx} \). From (3) and (4) we have throughout \(D \)

\[u_{xx} + u_{yy} = 0 \quad \text{and} \quad v_{xx} + v_{yy} = 0 .\]

So \(u(x, y) \) and \(v(x, y) \) are harmonic in \(D \).

Theorem 2.26.2

Theorem 2.26.2. A function \(f(z) = f(x + iy) = u(x, y) + iv(x, y) \) is analytic in a domain \(D \) if and only if \(v(x, y) \) is a harmonic conjugate of \(u(x, y) \).

Proof. If \(v \) is a harmonic conjugate of \(u \), then their first order partial derivatives satisfy the Cauchy-Riemann equations (by definition of harmonic conjugates) throughout \(D \). So by Theorem 2.22.A, \(f \) is differentiable throughout \(D \) and so \(f \) is analytic on \(D \).

If \(f \) is analytic in \(D \), then by Theorem 2.26.1 \(u \) and \(v \) are harmonic in \(D \). By the definition of analytic, \(f \) is differentiable throughout \(D \) and so by Theorem 2.21.A, \(u \) and \(v \) satisfy the Cauchy-Riemann equations on \(D \). So (by the definition of harmonic conjugates), \(v \) is a harmonic conjugate of \(u \).