Chapter 3. Elementary Functions
Section 3.32. Some Identities Involving Logarithms—Proofs of Theorems
Table of contents

1. Lemma 3.32.A.
2. Lemma 3.32.C
3. Lemma 3.32.D
Lemma 3.32.A. For the multiple-valued “function” \(\log z \) defined in Section 3.30, we have for all nonzero \(z_1, z_2 \in \mathbb{C} \) that

\[
\log(z_1 z_2) = \log z_1 + \log z_2.
\]

Proof. Since we have by definition, \(\log z = \ln |z| + \arg(z) \), and by Lemma 1.8.1, \(\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \), then

\[
\log(z_1 z_2) = \ln |z_1 z_2| + \arg(z_1 z_2) = \ln |z_1| + \ln |z_2| + \arg(z_1) + \arg(z_2)
\]

\[
= (\ln |z_1| + \arg(z_1)) + (\ln |z_2| + \arg(z_2)) = \log z_1 + \log z_2.
\]
Lemma 3.32.A. For the multiple-valued “function” log \(z \) defined in Section 3.30, we have for all nonzero \(z_1, z_2 \in \mathbb{C} \) that

\[
\log(z_1 z_2) = \log z_1 + \log z_2.
\]

Proof. Since we have by definition, \(\log z = \ln |z| + \arg(z) \), and by Lemma 1.8.1, \(\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \), then

\[
\log(z_1 z_2) = \ln |z_1 z_2| + \arg(z_1 z_2) = \ln |z_1| + \ln |z_2| + \arg(z_1) + \arg(z_2)
\]

\[
= (\ln |z_1| + \arg(z_1)) + (\ln |z_2| + \arg(z_2)) = \log z_1 + \log z_2.
\]

\[\square\]
Lemma 3.32.C

Lemma 3.32.C. For any nonzero $z \in \mathbb{C}$, for all $n \in \mathbb{Z}$ we have $z^n = e^{n \log z}$.

Proof. First, for $z = re^{i\theta} = |z|e^{i \arg z}$, notice that $e^{\log z} = e^{\ln |z| + i \arg z} = e^{\ln |z|}e^{i \arg z} = |z|e^{i \arg z} = z$. So for $n \geq 0$ we have

$$z^n = (e^{\log z})^n = \underbrace{(e^{\log z})(e^{\log z}) \ldots (e^{\log z})}_{n \text{ times}} = e^{n \log z} \text{ by Lemma 3.29.A.}$$

For $n < 0$ we have

$$z^n = (e^{\log z})^n = e^{-n \log z} \text{ by Lemma 3.29.A.}$$
Lemma 3.32.C

Lemma 3.32.C. For any nonzero \(z \in \mathbb{C} \), for all \(n \in \mathbb{Z} \) we have
\[
z^n = e^{n \log z}.
\]

Proof. First, for \(z = re^{i\theta} = |z|e^{i \arg z} \), notice that
\[
e^{\log z} = e^{\ln |z| + i \arg z} = e^{\ln |z|}e^{i \arg z} = |z|e^{i \arg z} = z.
\]
So for \(n \geq 0 \) we have
\[
z^n = (e^{\log z})^n = \left(e^{\log z} \right) \left(e^{\log z} \right) \cdots \left(e^{\log z} \right)
\]
\[
= e^{n \log z} \text{ by Lemma 3.29.A.}
\]

For \(n < 0 \) we have
\[
z^n = (e^{\log z})^n = (e^{-\log z})^{-n} = \left(e^{-\log z} \right) \left(e^{-\log z} \right) \cdots \left(e^{-\log z} \right)
\]
\[
= e^{-(-n) \log z} \text{ by Lemma 3.29.A}
\]
\[
= e^{n \log z}.
\]
Lemma 3.32.C

Lemma 3.32.C. For any nonzero \(z \in \mathbb{C} \), for all \(n \in \mathbb{Z} \) we have \(z^n = e^{n \log z} \).

Proof. First, for \(z = re^{i\theta} = |z|e^{i\arg z} \), notice that
\[
e^{\log z} = e^{\ln |z| + i\arg z} = e^{\ln |z|}e^{i\arg z} = |z|e^{i\arg z} = z.
\]
So for \(n \geq 0 \) we have
\[
z^n = (e^{\log z})^n = (e^{\log z})(e^{\log z}) \cdots (e^{\log z}) \quad \text{\(n \) times}
\]
\[= e^{n \log z} \text{ by Lemma 3.29.A.}\]

For \(n < 0 \) we have
\[
z^n = (e^{\log z})^n = (e^{-\log z})^{-n} = (e^{-\log z})(e^{-\log z}) \cdots (e^{-\log z}) \quad \text{\(-n \) times}
\]
\[= e^{-(\log z)^{-n}} \text{ by Lemma 3.29.A}
\]
\[= e^{n \log z}.\]
Lemma 3.32.D

Lemma 3.32.D. For any nonzero $z \in \mathbb{C}$, we have that for $n = 1, 2, 3, \ldots$

$$\exp\left(\frac{1}{n} \log z\right)$$

is a set consisting of n distinct elements each of which is an nth root of z (that is, when raised to the nth power gives z).

Proof. Let $z = r \exp(i\Theta) = |z| \exp(i\Theta)$ where Θ is the principal value of $\arg(z)$ (that is, $\Theta \in \arg(z)$ and $-\pi < \Theta \leq \pi$). Then

$$\exp\left(\frac{1}{n} \log z\right) = \exp\left(\frac{1}{n} (\ln |z| + i(\Theta + 2k\pi))\right)\text{ where } k \in \mathbb{Z}$$

$$= \exp\left(\frac{1}{n} \ln |z| + i \frac{\Theta + 2k\pi}{n}\right)$$

$$= \exp\left(\frac{1}{n} \ln |z|\right) \exp\left(i \frac{\Theta + 2k\pi}{n}\right)\text{ by Lemma 3.29.A. (7)}$$
Lemma 3.32.D. For any nonzero \(z \in \mathbb{C} \), we have that for \(n = 1, 2, 3, \ldots \)

\[
\exp\left(\frac{1}{n} \log z\right)
\]

is a set consisting of \(n \) distinct elements each of which is an \(n \)th root of \(z \) (that is, when raised to the \(n \)th power gives \(z \)).

Proof. Let \(z = r \exp(i\Theta) = |z| \exp(i\Theta) \) where \(\Theta \) is the principal value of \(\arg(z) \) (that is, \(\Theta \in \arg(z) \) and \(-\pi < \Theta \leq \pi \)). Then

\[
\exp\left(\frac{1}{n} \log z\right) = \exp\left(\frac{1}{n} (\ln |z| + i(\Theta + 2k\pi))\right) \text{ where } k \in \mathbb{Z}
\]

\[
= \exp\left(\frac{1}{n} \ln |z| + i \frac{\Theta + 2k\pi}{n}\right)
\]

\[
= \exp\left(\frac{1}{n} \ln |z|\right) \exp\left(i \frac{\Theta + 2k\pi}{n}\right) \text{ by Lemma 3.29.A. (7)}
\]
Lemma 3.32.D (continued)

Proof (continued). Now
\[\exp \left(i \left(\Theta/n + 2k\pi/n \right) \right) = \cos \left(\Theta/n + 2k\pi/n \right) + i \sin \left(\Theta/n + 2k\pi/n \right) \]
and this results in \(n \) distinct values as \(k \) ranges over the distinct values modulo \(n \) (say, \(k = 0, 1, \ldots, n - 1 \)). For each value given in (7), we have

\[
\left[\exp \left(\frac{1}{n} \log z \right) \right]^n = \left[\exp \left(\frac{1}{n} \ln |z| \right) \exp \left(i \frac{\Theta + 2k\pi}{n} \right) \right]^n = \left[\exp \left(\frac{1}{n} \ln |z| \right) \right]^n \left[\exp \left(i \frac{\Theta + 2k\pi}{n} \right) \right]^n
\]

\[= \exp(\ln |z|) \exp(i(\Theta + 2k\pi)) \text{ by Lemma 3.29.A} \]
\[= |z|e^{i(\Theta + 2k\pi)} = |z|e^{i\Theta} = z. \]

So the result follows, which we denote as \(z^{1/n} = \exp \left(\frac{1}{n} \log z \right) \). \(\Box \)
Lemma 3.32.D (continued)

Proof (continued). Now
\[
\exp \left(i \left(\Theta / n + 2k \pi / n \right) \right) = \cos(\Theta / n + 2k \pi / n) + i \sin(\Theta / n + 2k \pi / n)
\]
and this results in \(n \) distinct values as \(k \) ranges over the distinct values modulo \(n \) (say, \(k = 0, 1, \ldots, n - 1 \)). For each value given in (7), we have

\[
\left[\exp \left(\frac{1}{n} \log z \right) \right]^n = \left[\exp \left(\frac{1}{n} \ln |z| \right) \exp \left(i \frac{\Theta + 2k \pi}{n} \right) \right]^n
\]
\[
= \left[\exp \left(\frac{1}{n} \ln |z| \right) \right]^n \left[\exp \left(i \frac{\Theta + 2k \pi}{n} \right) \right]^n
\]
\[
= \exp(\ln |z|) \exp(i(\Theta + 2k \pi)) \text{ by Lemma 3.29.A}
\]
\[
= |z|e^{i(\Theta+2k\pi)} = |z|e^{i\Theta} = z.
\]

So the result follows, which we denote as \(z^{1/n} = \exp \left(\frac{1}{n} \log z \right) \).