Complex Variables

Chapter 4. Integrals
Section 4.50. Cauchy Integral Formula—Proofs of Theorems
Theorem 4.50.A. Cauchy Integral Formula
Theorem 4.50.A. Cauchy Integral Formula.

Let f be analytic everywhere inside and on simple closed contour C, parameterized in the positive sense. If z_0 is any point interior to C, then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z) \, dz}{z - z_0}.$$

Proof. Let C_ρ denote the positively oriented circle $|z - z_0| = \rho$, where ρ is small enough the C_ρ is interior to C (which can be done since C is a closed set and so $C \setminus C$ is open with z_0 as an interior point of the open set $C \setminus C$; see Figure 66).
Theorem 4.50.A. Cauchy Integral Formula.
Let f be analytic everywhere inside and on simple closed contour C, parameterized in the positive sense. If z_0 is any point interior to C, then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} \, dz.$$

Proof. Let C_ρ denote the positively oriented circle $|z - z_0| = \rho$, where ρ is small enough the C_ρ is interior to C (which can be done since C is a closed set and so $C \setminus C$ is open with z_0 as an interior point of the open set $C \setminus C$; see Figure 66).
Theorem 4.50.A

Theorem 4.50.A. Cauchy Integral Formula.

Let f be analytic everywhere inside and on simple closed contour C, parameterized in the positive sense. If z_0 is any point interior to C, then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z) \, dz}{z - z_0}.$$

Proof. Let C_ρ denote the positively oriented circle $|z - z_0| = \rho$, where ρ is small enough the C_ρ is interior to C (which can be done since C is a closed set and so $\mathbb{C} \setminus C$ is open with z_0 as an interior point of the open set $\mathbb{C} \setminus C$; see Figure 66).
Theorem 4.50.A (continued 1)

Proof (continued). The function \(f(z)/(z - z_0) \) is analytic inside and on \(C \) except at \(z_0 \). So by the Principle of Deformation (Corollary 4.49.B),
\[
\int_C \frac{f(z)}{z - z_0} \, dz = \int_{C_\rho} \frac{f(z)}{z - z_0} \, dz.
\]
So
\[
\int_C \frac{f(z)}{z - z_0} \, dz - f(z_0) \int_{C_\rho} \frac{dz}{z - z_0} = \int_{C_\rho} \frac{f(z) - f(z_0)}{z - z_0} \, dz.
\]
Next,
\[
\int_{C_\rho} \frac{dz}{z - z_0} = 2\pi i \text{ by Exercise 42.10(b), so}
\]
\[
\int_C \frac{f(z)}{z - z_0} \, dz - 2\pi i f(z_0) = \int_{C_\rho} \frac{f(z) - f(z_0)}{z - z_0} \, dz. \tag{4}
\]
Since \(f \) is analytic, then it is continuous at \(z_0 \) and so for all \(\varepsilon > 0 \) there is \(\delta > 0 \) such that if \(|z - z_0| < \delta \) then \(|f(z) - f(z_0)| < \varepsilon/(2\pi) \).
Theorem 4.50.A (continued 1)

Proof (continued). The function \(f(z)/(z - z_0) \) is analytic inside and on \(C \) except at \(z_0 \). So by the Principle of Deformation (Corollary 4.49.B),
\[
\int_C \frac{f(z)}{z - z_0} \, dz = \int_{C_\rho} \frac{f(z)}{z - z_0} \, dz.
\]
So
\[
\int_C \frac{f(z)}{z - z_0} \, dz - f(z_0) \int_{C_\rho} \frac{dz}{z - z_0} = \int_{C_\rho} \frac{f(z) - f(z_0)}{z - z_0} \, dz.
\]
Next,
\[
\int_{C_\rho} \frac{dz}{z - z_0} = 2\pi i \text{ by Exercise 42.10(b), so}
\]
\[
\int_C \frac{f(z)}{z - z_0} \, dz - 2\pi i f(z_0) = \int_{C_\rho} \frac{f(z) - f(z_0)}{z - z_0} \, dz. \quad (4)
\]
Since \(f \) is analytic, then it is continuous at \(z_0 \) and so for all \(\varepsilon > 0 \) there is \(\delta > 0 \) such that if \(|z - z_0| < \delta \) then \(|f(z) - f(z_0)| < \varepsilon/(2\pi) \). The only restriction on \(\rho \) above is that \(C_\rho \) is interior to \(C \). Let \(\rho' = \min\{\rho, \delta/2\} \).
Then \(C_{\rho'} \) is interior to \(C \) and so the equations above involving \(C_\rho \) also hold for \(C_{\rho'} \).
Theorem 4.50.A (continued 1)

Proof (continued). The function \(f(z)/(z - z_0) \) is analytic inside and on \(C \) except at \(z_0 \). So by the Principle of Deformation (Corollary 4.49.B),

\[
\int_C \frac{f(z)}{z - z_0} \, dz = \int_{C_\rho} \frac{f(z)}{z - z_0} \, dz.
\]

So

\[
\int_C \frac{f(z)}{z - z_0} \, dz - f(z_0) \int_{C_\rho} \frac{dz}{z - z_0} = \int_{C_\rho} \frac{f(z) - f(z_0)}{z - z_0} \, dz.
\]

Next,

\[
\int_{C_\rho} \frac{dz}{z - z_0} = 2\pi i \text{ by Exercise 42.10(b), so}
\]

\[
\int_C \frac{f(z)}{z - z_0} \, dz - 2\pi i f(z_0) = \int_{C_\rho} \frac{f(z) - f(z_0)}{z - z_0} \, dz. \tag{4}
\]

Since \(f \) is analytic, then it is continuous at \(z_0 \) and so for all \(\varepsilon > 0 \) there is \(\delta > 0 \) such that if \(|z - z_0| < \delta \) then \(|f(z) - f(z_0)| < \varepsilon/(2\pi) \). The only restriction on \(\rho \) above is that \(C_\rho \) is interior to \(C \). Let \(\rho' = \min\{\rho, \delta/2\} \).

Then \(C_{\rho'} \) is interior to \(C \) and so the equations above involving \(C_\rho \) also hold for \(C_{\rho'} \).
Theorem 4.50.A (continued 2)

Proof (continued). Then for \(z \) on \(C_{\rho'} \) we have \(|z - z_0| = \rho' \leq \delta/2 < \delta\) and so \(|f(z) - f(z_0)| < \varepsilon/(2\pi) \); also the length of \(C_{\rho'} \) is \(2\pi \rho' \) and so by Theorem 4.43.A,

\[
\left| \int_{C_{\rho'}} \frac{f(z) - f(z_0)}{z - z_0} \, dz \right| \leq \left(\frac{\varepsilon/(2\pi)}{\rho'} \right) (2\pi \rho') = \varepsilon.
\]

So by equation (4),

\[
\left| \int_{C_{\rho'}} \frac{f(z) - f(z_0)}{z - z_0} \, dz \right| = \left| \int_{C} \frac{f(z) \, dz}{z - z_0} - 2\pi i f(z_0) \right| < \varepsilon.
\]

Since \(\varepsilon > 0 \) is arbitrary, then the quantity \(\int_{C} \frac{f(z) \, dz}{z - z_0} - 2\pi i f(z_0) \) must be 0, and the result follows.
Theorem 4.50.A (continued 2)

Proof (continued). Then for \(z \) on \(C_{\rho'} \) we have \(|z - z_0| = \rho' \leq \delta/2 < \delta \) and so \(|f(z) - f(z_0)| < \varepsilon/(2\pi) \); also the length of \(C_{\rho'} \) is \(2\pi \rho' \) and so by Theorem 4.43.A,

\[
\left| \int_{C_{\rho'}} \frac{f(z) - f(z_0)}{z - z_0} \, dz \right| \leq \left(\frac{\varepsilon}{(2\pi)} \right) (2\pi \rho') = \varepsilon.
\]

So by equation (4),

\[
\left| \int_{C_{\rho'}} \frac{f(z) - f(z_0)}{z - z_0} \, dz \right| = \left| \int_{C} \frac{f(z)}{z - z_0} \, dz - 2\pi i f(z_0) \right| < \varepsilon.
\]

Since \(\varepsilon > 0 \) is arbitrary, then the quantity \(\int_{C} \frac{f(z)}{z - z_0} \, dz - 2\pi i f(z_0) \) must be 0, and the result follows. \(\square \)