Chapter 4. Integrals
Section 4.51. An Extension of the Cauchy Integral Formula—Proofs of Theorems
Table of contents

1 Lemma 4.51.A
Lemma 4.51.A

Lemma 4.51.A. Let f be analytic inside and on a simple closed contour C, taken in the positive sense. If z is any point interior to C then $f'(z)$ exists and

$$f'(z) = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s - z)^2} \, ds.$$

Proof. Let d be the smallest distance from z to points s on C and assume $0 < |\Delta z| < d$ (see Figure 67); the minimum distance d exists because C is a “compact set.”
Lemma 4.51.A

Lemma 4.51.A. Let f be analytic inside and on a simple closed contour C, taken in the positive sense. If z is any point interior to C then $f'(z)$ exists and

$$f'(z) = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s-z)^2} \, ds.$$

Proof. Let d be the smallest distance from z to points s on C and assume $0 < |\Delta z| < d$ (see Figure 67); the minimum distance d exists because C is a “compact set.”

![Diagram](image.png)
Lemma 4.51.A

Lemma 4.51.A. Let f be analytic inside and on a simple closed contour C, taken in the positive sense. If z is any point interior to C then $f'(z)$ exists and

$$f'(z) = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s-z)^2} \, ds.$$

Proof. Let d be the smallest distance from z to points s on C and assume $0 < |\Delta z| < d$ (see Figure 67); the minimum distance d exists because C is a “compact set.”
Lemma 4.51.A (continued 1)

Proof (continued). By the Cauchy Integral Formula (Theorem 4.50.A),

\[f(z) = \frac{1}{2\pi i} \int_C \frac{f(s) \, ds}{s - z}, \]

so

\[\frac{f(z + \Delta z) - f(z)}{\Delta z} = \frac{1}{\Delta z} \left(\frac{1}{2\pi i} \int_C \frac{f(s) \, ds}{s - (z + \Delta z)} - \int_C \frac{f(s) \, ds}{s - z} \right) \]

\[= \frac{1}{2\pi i} \int_C \left(\frac{1}{s - z - \Delta z} - \frac{1}{s - z} \right) \frac{f(s)}{\Delta z} \, ds = \frac{1}{2\pi i} \int_C \frac{f(s) \, ds}{(s - z - \Delta z)(s - z)}. \]

Now

\[\frac{1}{(s - z - \Delta z)(s - z)} = \frac{1}{(s - z)^2} + \frac{\Delta z}{(s - z - \Delta z)(s - z)^2}, \]

so

\[\frac{f(z + \Delta z) - f(z)}{\Delta z} = \frac{1}{2\pi i} \int_C \frac{f(s) \, ds}{(s - z)^2} \]

\[= \frac{1}{2\pi i} \int_C \frac{f(s) \, ds}{(s - z - \Delta z)(s - z)} - \frac{1}{2\pi i} \int_C \frac{f(s) \, ds}{(s - z)^2}. \]
Lemma 4.51.A (continued 2)

Proof (continued).

\[= \frac{1}{2\pi i} \int_C \left(\frac{1}{(s - z - \Delta z)(s - z)} - \frac{1}{(s - z)^2} \right) f(s) \, ds\]

\[= \frac{1}{2\pi i} \int_C \frac{\Delta z f(s)}{(s - z - \Delta z)(s - z)^2} \quad (*)\]

Next, let \(M\) denote the maximum value of \(|f(s)|\) on \(C\) (which exists since \(|f(s)|\) is continuous and \(C\) is compact) and observe that since \(|s - z| > d\) (by the choice of \(d\) as a minimum distance) and \(|\Delta z| < d\) (by the choice of \(\Delta z\)) then

\[|s - z - \Delta z| = |(s - z) - \Delta z| \geq ||s - z| - |\Delta z|| \quad \text{by Corollary 1.4.1}\]

\[\geq |s - z| - |\Delta z| \geq d - |\Delta z| > 0.\]
Lemma 4.51.A (continued 2)

Proof (continued).

\[
= \frac{1}{2\pi i} \int_C \left(\frac{1}{(s-z-\Delta z)(s-z)} - \frac{1}{(s-z)^2} \right) f(s) \, ds
\]

\[
= \frac{1}{2\pi i} \int_C \frac{\Delta z f(s) \, ds}{(s-z-\Delta z)(s-z)^2}. \quad (*)
\]

Next, let \(M \) denote the maximum value of \(|f(s)|\) on \(C \) (which exists since \(|f(s)|\) is continuous and \(C \) is compact) and observe that since \(|s-z| > d\) (by the choice of \(d \) as a minimum distance) and \(|\Delta z| < d\) (by the choice of \(\Delta z \)) then

\[
|s - z - \Delta z| = |(s - z) - \Delta z| \geq ||s - z| - |\Delta z|| \quad \text{by Corollary 1.4.1}
\]

\[
\geq |s - z| - |\Delta z| \geq d - |\Delta z| > 0.
\]
Lemma 4.51.A (continued 3)

Proof (continued). Thus by Theorem 4.43.A

\[\left| \int_C \frac{\Delta z f(s) \, ds}{(s - z - \Delta z)(s - z)^2} \right| \leq \frac{\left| \Delta z \right| M}{(d - \left| \Delta z \right|)d^2} L \]

where \(L \) is the length of \(C \). So from (\(*\)), this implies

\[\left| \frac{f(z + \Delta z) - f(z)}{\Delta z} - \frac{1}{2\pi i} \int_C \frac{f(s) \, ds}{(s - z)^2} \right| \leq \frac{1}{2\pi} \left| \int_C \frac{\Delta z f(s) \, ds}{(s - z - \Delta z)(s - z)^2} \right| \]

\[\leq \frac{\left| \Delta z \right| M}{2\pi(d - \left| \Delta z \right|)d^2} L \]

and so as \(\Delta z \to 0 \) we see that \(\frac{\left| \Delta z \right| M}{2\pi(d - \left| \Delta z \right|)d^2} L \to 0 \). Hence,

\[f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s - z)^2} \, ds. \]

Therefore, \(f'(z) \) exists and has the claimed value. \(\square \)
Lemma 4.51.A (continued 3)

Proof (continued). Thus by Theorem 4.43.A

\[\left| \int_C \frac{\Delta zf(s) \, ds}{(s - z - \Delta z)(s - z)^2} \right| \leq \frac{|\Delta z| M}{(d - |\Delta z|)d^2 L} \]

where \(L \) is the length of \(C \). So from (*) this implies

\[\left| \frac{f(z + \Delta z) - f(z)}{\Delta z} - \frac{1}{2\pi i} \int_C \frac{f(s) \, ds}{(s - z)^2} \right| = \frac{1}{2\pi} \left| \int_C \frac{\Delta zf(s) \, ds}{(s - z - \Delta z)(s - z)^2} \right| \leq \frac{|\Delta z| M}{2\pi(d - |\Delta z|)d^2 L} \]

and so as \(\Delta z \to 0 \) we see that \(\frac{|\Delta z| M}{2\pi(d - |\Delta z|)d^2 L} \to 0 \). Hence,

\[f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s - z)^2} \, ds. \]

Therefore, \(f'(z) \) exists and has the claimed value. \(\square \)